(本小題14分)已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn)。
(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說(shuō)明理由。
(I);(Ⅱ)時(shí),線段的長(zhǎng)度取最小值
(Ⅲ)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓上存在2個(gè)不同的點(diǎn),使得的面積為
解析試題分析:(1)由已知得,橢圓C的左頂點(diǎn)為A(-2,0),上頂點(diǎn)為D(0,1,由此能求出橢圓C的方程.(2)設(shè)直線AS的方程為y=k(x+2),從而M(,k).由題設(shè)條件可以求出N(,-),所以|MN|得到表示,再由均值不等式進(jìn)行求解
(3)在第二問(wèn)的基礎(chǔ)上確定了直線BS的斜率得到直線方程,利用點(diǎn)到直線的距離得到l‘,然后得到分析方程組的解的個(gè)數(shù)即為滿足題意的點(diǎn)的個(gè)數(shù)。
解:(I);故橢圓的方程為
(Ⅱ)直線AS的斜率顯然存在,且,故可設(shè)直線的方程為,從而
由得0
設(shè)則得,
從而即又
由得
故
又
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立。
時(shí),線段的長(zhǎng)度取最小值
(Ⅲ)由(Ⅱ)可知,當(dāng)取最小值時(shí),
此時(shí)的方程為
要使橢圓上存在點(diǎn),使得的面積等于,只須到直線的距離等于,所以在平行于且與距離等于的直線上。設(shè)直線
則由解得或
當(dāng)時(shí), 得,,故有2個(gè)不同的交點(diǎn);
當(dāng)時(shí),得,,故沒(méi)有交點(diǎn);
綜上:當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓上存在2個(gè)不同的點(diǎn),使得的面積為
考點(diǎn):本試題主要考查了橢圓與直線的位置關(guān)系,解題時(shí)要注意公式的靈活運(yùn)用.
點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用橢圓的幾何性質(zhì)表述出|MN|,同時(shí)結(jié)合均值不等式求解最小值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,直線:y=x+m
(1)若與橢圓有一個(gè)公共點(diǎn),求的值;
(2)若與橢圓相交于P,Q兩點(diǎn),且|PQ|等于橢圓的短軸長(zhǎng),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)已知拋物線的頂點(diǎn)是雙曲線的中心,而焦點(diǎn)是雙曲線的頂點(diǎn),求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知拋物線:的準(zhǔn)線經(jīng)過(guò)雙曲線:的左焦點(diǎn),若拋物線與雙曲線的一個(gè)交點(diǎn)是.
(1)求拋物線的方程; (2)求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知離心率為的橢圓過(guò)點(diǎn),為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn)。
(1)求橢圓的方程。
(2)證明:若直線的斜率分別為、,求證:+=0。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn).求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)為F1,F(xiàn)2(0,),且離心率。
(I)求橢圓的方程;
(II)直線l(與坐標(biāo)軸不平行)與橢圓交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)的橫坐標(biāo)
為,求直線l的斜率的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com