(07年湖南卷理)(12分)
已知雙曲線的左、右焦點分別為,,過點的動直線與雙曲線相交于兩點.
(I)若動點滿足(其中為坐標原點),求點的軌跡方程;
(II)在軸上是否存在定點,使?為常數(shù)?若存在,求出點的坐標;
若不存在,請說明理由.
解析:由條件知,,設(shè),.
解法一:(I)設(shè),則則,,
,由得
即
于是的中點坐標為.
當不與軸垂直時,,即.
又因為兩點在雙曲線上,所以,,兩式相減得
,即.
將代入上式,化簡得.
當與軸垂直時,,求得,也滿足上述方程.
所以點的軌跡方程是.
(II)假設(shè)在軸上存在定點,使為常數(shù).
當不與軸垂直時,設(shè)直線的方程是.
代入有.
則是上述方程的兩個實根,所以,,
于是
.
因為是與無關(guān)的常數(shù),所以,即,此時=.
當與軸垂直時,點的坐標可分別設(shè)為,,
此時.
故在軸上存在定點,使為常數(shù).
解法二:(I)同解法一的(I)有
當不與軸垂直時,設(shè)直線的方程是.
代入有.
則是上述方程的兩個實根,所以.
.
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
當時,,由④⑤得,,將其代入⑤有
.整理得.
當時,點的坐標為,滿足上述方程.
當與軸垂直時,,求得,也滿足上述方程.
故點的軌跡方程是.
(II)假設(shè)在軸上存在定點點,使為常數(shù),
當不與軸垂直時,由(I)有,.
以上同解法一的(II).
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖南卷理)(12分)
已知函數(shù),.
(I)設(shè)是函數(shù)圖象的一條對稱軸,求的值.
(II)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖南卷理)(12分)
某地區(qū)為下崗人員免費提供財會和計算機培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項培訓(xùn)、參加兩項培訓(xùn)或不參加培訓(xùn),已知參加過財會培訓(xùn)的有60%,參加過計算機培訓(xùn)的有75%.假設(shè)每個人對培訓(xùn)項目的選擇是相互獨立的,且各人的選擇
相互之間沒有影響.
(I)任選1名下崗人員,求該人參加過培訓(xùn)的概率;
(II)任選3名下崗人員,記為3人中參加過培訓(xùn)的人數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖南卷理)(13分)
已知()是曲線上的點,,是數(shù)列的前項和,且滿足,,….
(I)證明:數(shù)列()是常數(shù)數(shù)列;
(II)確定的取值集合,使時,數(shù)列是單調(diào)遞增數(shù)列;
(III)證明:當時,弦()的斜率隨單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖南卷理)(13分)
已知()是曲線上的點,,是數(shù)列的前項和,且滿足,,….
(I)證明:數(shù)列()是常數(shù)數(shù)列;
(II)確定的取值集合,使時,數(shù)列是單調(diào)遞增數(shù)列;
(III)證明:當時,弦()的斜率隨單調(diào)遞增.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com