1.某中學(xué)生物興趣小組在學(xué)校生物園地種植了一批名貴樹苗,為了解樹苗生長(zhǎng)情況,從這批樹苗中隨機(jī)測(cè)量了其中50棵樹苗的高度(單位:厘米),把這些高度列成了如下的頻率分布表:
組別[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)231415124
(1)在這批樹苗中任取一棵,其高度在85厘米以上的概率大約是多少?
(2)這批樹苗的平均高度大約是多少?
(3)為了進(jìn)一步獲得研究資料,若從[40,50)組中移出一棵樹苗,從[90,100]組中移出兩棵樹苗進(jìn)行試驗(yàn)研究,則[40,50)組中的樹苗A和[90,100]組中的樹苗C同時(shí)被移出的概率是多少?

分析 (1)高度在85厘米以上的樹苗大約有6+4=10棵,由此能求出在這批樹苗中任取一棵,其高度在85厘米以上的概率.
(2)利用平均數(shù)定義能求出樹苗的平均高度.
(3)依題意,記[40,50)組中的樹苗分別為A、B,[90,100]組中的樹苗分別為C、D、E、F,利用列舉法能求出樹苗A和樹苗C同時(shí)被移出的概率.

解答 解。1)由已知,高度在85厘米以上的樹苗大約有6+4=10棵,
則在這批樹苗中任取一棵,其高度在85厘米以上的概率大約為$\frac{10}{50}$=$\frac{1}{5}$=0.2.
(2)樹苗的平均高度為:
x≈$\frac{45×2+55×3+65×14+75×15+85×12+95×4}{50}$=$\frac{3690}{50}$=73.8(厘米).
(3)依題意,記[40,50)組中的樹苗分別為A、B,
[90,100]組中的樹苗分別為C、D、E、F,
則所有的基本事件為:ACD、ACE、ACF、ADE、ADF、AEF、BCD、BCE、BCF、BDE、BDF、BEF,共12個(gè).
滿足A、C同時(shí)被移出的基本事件為:ACD、ACE、ACF,共3個(gè),
所以樹苗A和樹苗C同時(shí)被移出的概率P=$\frac{3}{12}$=0.25.

點(diǎn)評(píng) 本題考查平均數(shù)的求法,考查概率的求法,考查頻率分布表、概率、列舉法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.執(zhí)行如圖所示的程序框圖,若輸出S的值為$-\frac{103}{32}$,則判斷框中應(yīng)填入的條件是n≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)P(x,y)是函數(shù)y=f(x)的圖象上一點(diǎn),向量$\overrightarrow{a}$=(1,(x-3)3),$\overrightarrow$=(x-y-1,1),且$\overrightarrow{a}$⊥$\overrightarrow$.?dāng)?shù)列{an}是公差不為0的等差數(shù)列,且f(a1)+f(a2)+…+f(a7)=14,則a1+a2+…+a7=( 。
A.0B.7C.14D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,平面PAC⊥平面ABC,點(diǎn)E、F、O分別為線段PA、PB、AC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn),AB=BC=AC=4,PA=PC=2$\sqrt{2}$.求證:
(1)PA⊥平面EBO
(2)FG∥平面EBO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.2017年5月,印度電影《摔跤吧!爸爸》在中國上映,為了了解銀川觀眾的滿意度,某影院隨機(jī)調(diào)查了本市觀看影片的觀眾,現(xiàn)從調(diào)查人群中隨機(jī)抽取13名,并用如圖所示的莖葉圖記錄了他們的滿意度分?jǐn)?shù)(10分制,且以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉).若分?jǐn)?shù)不低于9分,則稱該觀眾為“滿意觀眾”.
(1)這13個(gè)分?jǐn)?shù)的中位數(shù)和眾數(shù)分別是多少?
(2)從本次所記錄的滿意度評(píng)分大于9.1的“滿意觀眾”中隨機(jī)抽取2人,求這2人得分不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是(  )
A.小于90°的角是銳角
B.鈍角必是第二象限角,第二象限角必是鈍角
C.第三象限的角大于第二象限的角
D.角α與角β的終邊相同,角α與角β可能不相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在某單位的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如圖所示.食堂某天購進(jìn)了90個(gè)面包,以x(單位:個(gè),60≤x≤110)表示面包的需求量,T(單位:元)表示利潤(rùn).
(Ⅰ)求T關(guān)于x的函數(shù)解析式;
(Ⅱ)求食堂每天面包需求量的中位數(shù);
(Ⅲ)根據(jù)直方圖估計(jì)利潤(rùn)T不少于100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.廣東佛山某學(xué)校參加暑假社會(huì)實(shí)踐活動(dòng)知識(shí)競(jìng)賽的學(xué)生中,得分在[80,90)中的有16人,得分在[90,100]中的有4人,用分層抽樣的方法從得分在[80,100]的學(xué)生中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)整體,從中任意選取2人,則其中恰有1人分?jǐn)?shù)不低于90的概率為( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.
(1)求A∪B,(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案