化簡:
1+sina
1-sina
-
1-sina
1+sina
考點:二倍角的正弦
專題:三角函數(shù)的求值
分析:利用三角函數(shù)的平方關系式,化簡求解即可.
解答: 解:
1+sina
1-sina
-
1-sina
1+sina
=
|cosα|
1-sinα
-
|cosα|
1+sinα

=|cosα|(
2sinα
1-sin2α

=
2sinα|cosα|
cos2α

=
2tanα,α∈(2kπ-
π
2
,2kπ+
π
2
)
-2tanα,α∈(2kπ+
π
2
,2kπ+
2
)
點評:本題考查同角三角函數(shù)的基本關系式的應用,三角函數(shù)的化簡求值,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(φ-2x)(0<φ<π),y=f(x)的圖象的一條對稱軸是直線x=
π
8

(1)求φ的值;
(2)求函數(shù)y=f(x)在[-π,0]的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:f(x)=x2-2x在x∈(-∞,0)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-alnx-1(a∈R),g(x)=xeb-x(b∈R),且函數(shù)g(x)的最大值為1.
(1)求b的值;
(2)若函數(shù)f(x)有唯一的零點,且對任意的x1,x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|
1
g(x2)
-
1
g(x1)
|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=
1
2
an2-
n
2
an+1(n∈N*)且a1=3.
(1)求a2,a3,a4的值及數(shù)列{an}的通項an
(2)設數(shù)列{bn}滿足bn=
2an+1
an(an+1)(an+2)
,Sn為數(shù)列{bn}的前n項和,求證:
7
60
≤Sn
13
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高三年級有3名男生和1名女生為了報某所大學,事先進行了多方詳細咨詢,并根據(jù)自己的高考成績情況,最終估計這3名男生報此所大學的概率都是
1
2
,這1名女生報此所大學的概率是
1
3
.且這4人報此所大學互不影響.
(Ⅰ)求上述4名學生中報這所大學的人數(shù)中男生和女生人數(shù)相等的概率;
(Ⅱ)在報考某所大學的上述4名學生中,記ξ為報這所大學的男生和女生人數(shù)的和,試求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學生離家去學校,由于怕遲到,所以一開始就跑步,等跑累了再走余下的路程. 在圖中縱軸表示離學校的距離,橫軸表示出發(fā)后的時間,則下圖中的四個圖形中較符合該學生走法的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為菱形,O是底面ABCD的對角線的交點,A1A=A1C,A1A⊥BC.
(1)證明:平面A1BC∥平面CD1B1;
(2)證明:A1O⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin(2x+φ)向左平移
π
6
個單位,所得函數(shù)圖象關于y軸對稱,則φ的最小正值為( 。
A、
π
12
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

同步練習冊答案