分析 對(duì)任意的x1∈[1,e],存在x2∈[0,2],使得f(x1)≥g(x2),等價(jià)于f(x1)min≥g(x2)min.g(x)=-xe-x,x∈[0,2],g′(x)=(x-1)e-x,可知x=1時(shí)函數(shù)g(x)取得極小值,g(1)=$-\frac{1}{e}$.x+$\frac{a}{x}$≥$-\frac{1}{e}$恒成立,x∈[1,e],化為:a≥-x2-$\frac{1}{e}x$=$-(x+\frac{1}{2e})^{2}$+$\frac{1}{4{e}^{2}}$=u(x),利用二次函數(shù)的單調(diào)性即可得出.
解答 解:對(duì)任意的x1∈[1,e],存在x2∈[0,2],使得f(x1)≥g(x2),
等價(jià)于f(x1)min≥g(x2)min.
g(x)=-xe-x,x∈[0,2],g′(x)=(x-1)e-x,可知x=1時(shí)函數(shù)g(x)取得極小值,g(1)=$-\frac{1}{e}$.
∴x+$\frac{a}{x}$≥$-\frac{1}{e}$恒成立,x∈[1,e],
化為:a≥-x2-$\frac{1}{e}x$=$-(x+\frac{1}{2e})^{2}$+$\frac{1}{4{e}^{2}}$=u(x),
u(x)在x∈[1,e]上單調(diào)遞減,因此x=1時(shí),u(x)取得最大值-1-$\frac{1}{e}$,
∴a≥-1-$\frac{1}{e}$,
∴a的取值范圍為$[-1-\frac{1}{e},+∞)$.
故答案為:$[-1-\frac{1}{e},+∞)$.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、不等式的性質(zhì)、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k-1 | B. | k | C. | k+1 | D. | k2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com