已知等差數(shù)列{an}的前5項和S5=25,且a2=3,則a8的值是( 。
A、13B、14C、15D、16
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等差數(shù)列的首項和公差,由已知列方程組求得首項和公差,代入等差數(shù)列的通項公式得答案.
解答: 解:設(shè)等差數(shù)列的首項為a1,公差為d,
由S5=25,且a2=3,得
5a1+10d=25
a1+d=3
,解得
a1=1
d=2

∴a8=a1+7d=1+7×2=15.
故選:C.
點評:本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,0,0),B(0,-1,1),
OA
OB
OB
的夾角為60°,則λ的值為(  )
A、±
6
6
B、
6
6
C、-
6
6
D、±
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為
1
2
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(2,0),橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)的離心率為
3
2
;F是橢圓E的下焦點,直線AF的斜率為
3
2
,O為坐標(biāo)原點.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點A的動直線l與E相交于M,N兩點,當(dāng)△OMN的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某算法如圖所示,若輸入A=27,B=12,則輸出的結(jié)果是(  )
A、27B、3C、0D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中,A、B、C、D四點的坐標(biāo)分別為(-2,5),(2,2),(
4
3
,0).(0,1)
(1)求證:AB∥CD;
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為有窮數(shù)列,Sn為{an}的前n項和,定義數(shù)列{an}的期望和為Tn=
S1+S2+…+Sn
n
,若數(shù)列a1,a2,…a99的期望和T99=1000,則數(shù)列2,a1,a2,…a99的期望和T100=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、若命題P為真命題,命題q為假命題,則命題“p∧q”為真命題
B、命題“若p則q”的否命題是“若q則p”
C、命題“?x∈R,2x>0”的否定是“?x0∈R,2x0≤0”
D、函數(shù)y=
2x-x2
的定義域是{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各項中,不可以組成集合的是( 。
A、所以無理數(shù)
B、接近于0的數(shù)
C、不是質(zhì)數(shù)的數(shù)
D、不能被3整除的數(shù)

查看答案和解析>>

同步練習(xí)冊答案