11.已知$\overrightarrow{a}$,$\overrightarrow$是非零向量,若向量$\overrightarrow{a}$是平面α的一個法向量,則“$\overrightarrow{a}$•$\overrightarrow$=0”是“向量$\overrightarrow$所在的直線平行于平面α”的( 。l件.
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

分析 根據(jù)充分條件和必要條件的定義進行判斷即可.

解答 解:若向量$\overrightarrow a$是平面α的法向量,則$\overrightarrow{a}$⊥α,
若$\overrightarrow a$•$\overrightarrow b$=0,則$\overrightarrow b$∥α,則向量$\overrightarrow b$所在直線平行于平面α或在平面α內(nèi),即充分性不成立,
若向量$\overrightarrow b$所在直線平行于平面α或在平面α內(nèi),則$\overrightarrow b$∥α,
∵向量$\overrightarrow a$是平面α的法向量,
∴$\overrightarrow{a}$⊥α,
則$\overrightarrow{a}$⊥$\overrightarrow b$,即$\overrightarrow a$•$\overrightarrow b$=0,即必要性成立,
則$\overrightarrow a$•$\overrightarrow b$=0是向量$\overrightarrow b$所在直線平行于平面α或在平面α內(nèi)的必要條件,
故選:B.

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)向量和平面的位置關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知θ的頂角與原點重合,始邊與x軸正半軸重合,終邊y=2x上,求sinθ,cosθ,tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)化簡$\frac{{2{{cos}^2}α-1}}{{2tan(\frac{π}{4}-α){{sin}^2}(\frac{π}{4}+α)}}$.
(Ⅱ)已知α,β均為銳角,且sinα=$\frac{{2\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,求α-β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題P:?x∈(0,+∞),lnx<lgx;命題q:?x∈R,x3=1-x2,則下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和Sn=n2+9n.
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{$\frac{2}{{a}_{n}•{a}_{n+2}}$}的前100項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將二進制數(shù)11101(2)轉(zhuǎn)化為四進制數(shù),正確的是(  )
A.120(4)B.131(4)C.200(4)D.202(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+4x-3,x≤1\\ lnx,\;\;\;\;\;\;\;\;\;\;\;\;\;x>1.\end{array}$,若|f(x)|+a≥ax,則a的取值范圍是[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a∈R,函數(shù)f(x)=x|x-a|-a,若對任意的x∈[2,3],f(x)≥0恒成立,則a的取值范圍是(-∞,$\frac{4}{3}$]∪[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,離心率e=$\frac{{\sqrt{3}}}{2}$,過點F且垂直于x軸的直線被圓截得的弦長為1.
(1)求橢圓C的方程;
(2)記橢圓C的上、下頂點分別為A,B,設(shè)過點M(m,-2)(m≠0)的直線MA,MB與橢圓C分別交于點P,Q,求證:直線PQ必過一定點,并求該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案