精英家教網 > 高中數學 > 題目詳情

已知圓C經過點A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)過點(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點,求四邊形PMQN面積的最大值.

(1)x2+y2=4   (2)7

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知圓M: ,直線,上一點A的橫坐標為,過點A作圓M的兩條切線,,切點分別為B,C.

(1)當時,求直線,的方程;
(2)當直線,互相垂直時,求的值;
(3)是否存在點A,使得?若存在,求出點A的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓
(1)將圓的方程化為標準方程,并指出圓心坐標和半徑;
(2)求直線被圓所截得的弦長。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,設橢圓的左、右焦點分別為,點在橢圓上,,,的面積為.
(1)求該橢圓的標準方程;
(2)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點?若存在,求圓的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓C:x2+y2+2x-4y+3=0,若圓C的切線在x軸、y軸上的截距相等,求切線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,△ABO三邊上的點C、D、E都在⊙O上,已知AB∥DE,AC=CB.

(1)求證:直線AB是⊙O的切線;
(2)若AD=2,且tan∠ACD=,求⊙O的半徑r的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,為圓的直徑,為垂直的一條弦,垂足為,弦.
(1)求證:、四點共圓;
(2)若,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連結BC并延長至D,使得CD=BC,求AC與OD的交點P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

如圖,半徑為1的圓與直線l相交于A、B兩個不同的點,設,當直
l平行移動時,則圓被直線掃過部分(圖中陰影部分)的面積關于的函數=____________________.

查看答案和解析>>

同步練習冊答案