分析:(1)an+12-an2-2an+1-2an=0,(an+1+an)(an+1-an-2)=0.a(chǎn)n+1-an=2,數(shù)列{an}是等差數(shù)列
(2)bn=n3-3n2+5-an=n3-3n2+5-(2n-1)=n3-3n2-2n+6.首先考慮用作差法解決.
(3)利用裂項求和法求和
解答:解:(1)a
n+12-a
n2-2a
n+1-2a
n=0,(a
n+1+a
n)(a
n+1-a
n-2)=0.
{a
n}是正項數(shù)列,所以a
n+1-a
n=2,
所以數(shù)列{a
n}是等差數(shù)列,a
n=1+(n-1)×2=2n-1.
(2)b
n=n
3-3n
2+5-a
n=n
3-3n
2+5-(2n-1)=n
3-3n
2-2n+6.
b
n-a
n=n
3-3n
2-4n+7.
當(dāng)n=1時,b
1-a
1=1>0,b
1>a
1當(dāng)n=2時,b
2-a
2=-5<0,b
2<a
2當(dāng)n=3時,b
3-a
3=-5<0,b
3<a
3當(dāng)n=4時,b
4-a
4=7>0,b
4<a
4考查函數(shù)f(x)=x
3-3x
2-4x+7(x≥4)
f′(x)=3x
2-6x-4=3(x-1)2-7>0,f(x)單調(diào)遞增,
所以n≥4時,數(shù)列{b
n-a
n}單調(diào)遞增,b
n>a
n.
綜上所述,當(dāng)n=1或n≥4時,b
n>a
n.當(dāng)n=2或3時,b
n<a
n.
(3)c
n=
=
=
(
-),
S
n=
[
(1-)+(-)+…+(-)]
=
(1-)=
點評:本題考查了數(shù)列通項公式求解,函數(shù)思想,裂項求和法.