設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實(shí)數(shù)的最大整數(shù)(如),記,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為.
(Ⅰ)若,求;
(Ⅱ)若對(duì)于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:()的充分必要條件為.
(Ⅰ);(Ⅱ)答案詳見解析;(Ⅲ)答案詳見解析.
解析試題分析:(Ⅰ)由已知得,,,,且當(dāng)時(shí),.且,故,,,且當(dāng)時(shí),,進(jìn)而求;(Ⅱ)已知數(shù)列的前項(xiàng)和(),可求得,由取整函數(shù)得,,故,要證明,只需證明,故可聯(lián)想到,則;(Ⅲ)先證明充分性,當(dāng)時(shí),,由取整函數(shù)的性質(zhì)得,故;必要性的證明,當(dāng)時(shí),,則有.
試題解析:(Ⅰ)解:由等比數(shù)列的,,得,,,且當(dāng)時(shí),.
所以,,,且當(dāng)時(shí),.
即
(Ⅱ)證明:因?yàn)?,所以 ,.
因?yàn)?,
所以 ,.
由 ,得 .
因?yàn)?,
所以 ,
所以 ,即 .
(Ⅲ)證明:(充分性)因?yàn)?,,
所以,
所以對(duì)一切正整數(shù)n都成立.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1b/7/fm28u1.png" style="vertical-align:middle;" />,,
所以.
(必要性)因?yàn)閷?duì)于任意的,,
當(dāng)時(shí),由,得;
當(dāng)時(shí),由,,得.
所以對(duì)一切正整數(shù)n都有.
由 ,,得對(duì)一切正整數(shù)n都有,
所以公比
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,求數(shù)列{anbn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)表示數(shù)列的前項(xiàng)和.
(1)若為公比為的等比數(shù)列,寫出并推導(dǎo)的計(jì)算公式;
(2)若,,求證:<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
稱滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若數(shù)列的通項(xiàng)公式是,
試判斷數(shù)列是否為2014階“期待數(shù)列”,并說明理由;
(2)若等比數(shù)列為階“期待數(shù)列”,求公比q及的通項(xiàng)公式;
(3)若一個(gè)等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,是其前項(xiàng)的和,且滿足,對(duì)一切都有成立,設(shè).
(1)求;
(2)求證:數(shù)列 是等比數(shù)列;
(3)求使成立的最小正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列前項(xiàng)和,數(shù)列滿足(),
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:當(dāng)時(shí),數(shù)列為等比數(shù)列;
(3)在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為,若數(shù)列中只有最小,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且,.
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com