已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F(xiàn)1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。
解:(Ⅰ)設重心G(x,y),則 整理得將(*)式代入y2=4x中,得(y+1)2= ∴重心G的軌跡方程為(y+1)2=.……………6分
(Ⅱ) ∵橢圓與拋物線有共同的焦點,由y2=4x得F2(1,0),∴b2=8,橢圓方程為。設P(x1,y1),由得,∴x1=,x1=-6(舍).∵x=-1是y2=4x的準線,即拋物線的準線過橢圓的另一個焦點F1。
設點P到拋物線y2=4x的準線的距離為PN,則︱PF2︱=︱PN︱.
又︱PN︱=x1+1=,∴.
過點P作PP1⊥x軸,垂足為P1,在Rt△PP1F1中,cosα=在Rt△PP1F2中,cos(л-β)=,cosβ=,∴cosαcosβ=。
∵x1=,∴∣PP1∣=,∴.………………12分
科目:高中數(shù)學 來源: 題型:
y2 |
a2 |
y2 |
b2 |
NA |
AF |
NB |
BF |
OP |
OQ |
OP′ |
OQ′ |
OS |
OP |
OQ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
π |
4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年唐山一中一模)(12分) 已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F(xiàn)1是橢圓的左焦點。
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年遼寧沈陽二中等重點中學協(xié)作體高三領航高考預測(七)理數(shù)學卷(解析版) 題型:解答題
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F(xiàn)1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com