【題目】如圖,已知拋物線與軸相交于點(diǎn),兩點(diǎn),是該拋物線上位于第一象限內(nèi)的點(diǎn).
(Ⅰ) 記直線的斜率分別為,求證:為定值;
(Ⅱ)過點(diǎn)作,垂足為.若關(guān)于軸的對(duì)稱點(diǎn)恰好在直線上,求的面積.
【答案】(Ⅰ)證明見解析(Ⅱ)
【解析】
(Ⅰ)由題意寫出的坐標(biāo),設(shè),,分別表示出,計(jì)算即可;
(Ⅱ)由題知直線的斜率為,由得,從而求解得到點(diǎn)的坐標(biāo)及直線和的方程,聯(lián)立得點(diǎn)坐標(biāo),根據(jù)三角形面積公式求出即可.
(Ⅰ)令,則,解得,
點(diǎn),的坐標(biāo)分別為,,
是該拋物線上位于第一象限內(nèi)的點(diǎn),
設(shè)點(diǎn),,
,,
,即為定值.
(Ⅱ)關(guān)于軸的對(duì)稱點(diǎn)恰好在直線上,
直線關(guān)于軸對(duì)稱,
,
,
,即,
解得(負(fù)值舍去),
,,,
直線方程為,直線方程,
聯(lián)立直線與的方程,
則,
解得,
,
的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校20名同學(xué)的數(shù)學(xué)和英語成績(jī)?nèi)缦卤硭荆?/span>
將這20名同學(xué)的兩顆成績(jī)繪制成散點(diǎn)圖如圖:
根據(jù)該校以為的經(jīng)驗(yàn),數(shù)學(xué)成績(jī)與英語成績(jī)線性相關(guān).已知這名學(xué)生的數(shù)學(xué)平均成績(jī)?yōu)?/span>,英語平均成績(jī),考試結(jié)束后學(xué)校經(jīng)過調(diào)查發(fā)現(xiàn)學(xué)號(hào)為的同學(xué)與學(xué)號(hào)為的同學(xué)(分別對(duì)應(yīng)散點(diǎn)圖中的)在英語考試中作弊,故將兩位同學(xué)的兩科成績(jī)?nèi)∠?/span>.
取消兩位作弊同學(xué)的兩科成績(jī)后,求其余同學(xué)的數(shù)學(xué)成績(jī)與英語成績(jī)的平均數(shù);
取消兩位作弊同學(xué)的兩科成績(jī)后,求數(shù)學(xué)成績(jī)x與英語成績(jī)y的線性回歸直線方程,并據(jù)此估計(jì)本次英語考試學(xué)號(hào)為8的同學(xué)如果沒有作弊的英語成績(jī).(結(jié)果保留整數(shù))
附:位同學(xué)的兩科成績(jī)的參考數(shù)據(jù):
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形與均為菱形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若為線段上的一點(diǎn),且滿足直線與平面所成角的正弦值為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市隨機(jī)抽取部分企業(yè)調(diào)查年上繳稅收情況(單位:萬元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是 ,樣本數(shù)據(jù)分組為,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果年上繳稅收不少于萬元的企業(yè)可申請(qǐng)政策優(yōu)惠,若共抽取企業(yè)個(gè),試估計(jì)有多少企業(yè)可以申請(qǐng)政策優(yōu)惠;
(Ⅲ)從企業(yè)中任選個(gè),這個(gè)企業(yè)年上繳稅收少于萬元的個(gè)數(shù)記為 ,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(為自然對(duì)數(shù)的底數(shù)).
(1)若在處的切線過點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為單位正方體,黑白兩只螞蟻從點(diǎn)出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”,白螞蟻爬行的路線是,黑螞蟻爬行的路線是,它們都遵循如下規(guī)則:所爬行的第段與第段所在直線必須是異面直線(其中是自然數(shù)),設(shè)黑、白螞蟻都走完2012段后各停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩只螞蟻的距離是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的單調(diào)性;
(2)當(dāng)在上的最小值是時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com