記F ( x,y ) = ( x y ) 2 + (+) 2y ≠ 0),則F ( xy )的最小值是        。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:F(x,y)=yx(x>0,y>0)
(1)解關(guān)于x的不等式F(1,x2)+F(2,x)≤3x-1;
(2)記f(x)=3•F(1,x),設(shè)Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n
n
)
,若不等式
an
Sn
an+1
Sn+1
對(duì)n∈N*恒成立,求實(shí)數(shù)a的取值范圍;
(3)記g(x)=F(x,2),正項(xiàng)數(shù)列an滿(mǎn)足:a1=3,g(an+1)=8an,求數(shù)列an的通項(xiàng)公式,并求所有可能的乘積ai•aj(1≤i≤j≤n)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+5,記f(x)的導(dǎo)數(shù)為f′(x).
(I)若曲線(xiàn)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)斜率為3,且x=
2
3
時(shí),y=f(x)有極值,求函數(shù)f(x)的解析式;
(II)在(I)的條件下,求函數(shù)f(x)在[-4,1]上的最大值和最小值;
(III)若關(guān)于x的方程f’(x)=0的兩個(gè)實(shí)數(shù)根為α、β,且1<α<β<2試問(wèn):是否存在正整數(shù)n0,使得|f′(n0)|≤
3
4
?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于已知的x,y,記f(x,y)=min{27-x,27x-y,27y-1},當(dāng)x∈(0,1),y∈(0,1)時(shí),f(x,y)的最大值為
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于已知的x,y,記f(x,y)=min{27-x,27x-y,27y-1},當(dāng)x∈(0,1),y∈(0,1)時(shí),f(x,y)的最大值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷14(理科)(解析版) 題型:填空題

對(duì)于已知的x,y,記f(x,y)=min{27-x,27x-y,27y-1},當(dāng)x∈(0,1),y∈(0,1)時(shí),f(x,y)的最大值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案