已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
(1),;(2)單調(diào)減區(qū)間是,單調(diào)增區(qū)間是.
【解析】
試題分析:(1)利用導(dǎo)數(shù)的運算法則和常見函數(shù),先求出函數(shù)f(x)的導(dǎo)數(shù),利用在x=1處有極值得,=且=0,列出關(guān)于a,b的方程,求a,b的值;(2)將(1)中的a,b的值代入,求出為正或負的對應(yīng)的區(qū)間,就是函數(shù)的單調(diào)增區(qū)間或單調(diào)減區(qū)間,注意單調(diào)區(qū)間的正確寫法.
試題解析:(1) .
又在處有極值.
∴即
解之得且. (7分)
(2)由(1)可知,其定義域是,
且.
由,得;
由,得.
所以函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是. (14分)
考點:常見函數(shù)的導(dǎo)數(shù);導(dǎo)數(shù)的運算法則;函數(shù)的極值;導(dǎo)數(shù)與函數(shù)單調(diào)性間的關(guān)系
科目:高中數(shù)學(xué) 來源:2015屆廣東省惠州市高二3月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在復(fù)平面內(nèi),設(shè)(是虛數(shù)單位),則復(fù)數(shù)對應(yīng)的點位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西省忻州市高二下學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)=的導(dǎo)函數(shù)是( )
A.y′=3 B.y′=2
C.y′=3+ D.y′=3+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西省忻州市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)在區(qū)間上的導(dǎo)函數(shù)為,在區(qū)間上的導(dǎo)函數(shù)為,若在區(qū)間上恒成立,則稱函數(shù)在區(qū)間上為“凸函數(shù)”.已知,若對任意的實數(shù)滿足時,函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西省忻州市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
給出下列四個命題:
① 因為,所以;
② 由兩邊同除,可得;
③ 數(shù)列1,4,7,10,…,的一個通項公式是;
④ 演繹推理是由一般到特殊的推理,類比推理是由特殊到特殊的推理.
其中正確命題的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西省高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
若函數(shù)在[-1,1]上有最大值3,則該函數(shù)在[-1,1]上的最小值是__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西省高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題
9件產(chǎn)品中,有4件一等品,3件二等品,2件三等品,現(xiàn)在要從中抽出4件產(chǎn)品來檢查,至少有兩件一等品的抽取方法是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
直線的斜率為______________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
若直線: (t為參數(shù))與直線:(s為參數(shù))垂直,則k= 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com