如圖,儲油灌的表面積S為定值,它的上部是半球,下部是圓柱,半球的半徑等于圓柱底面半徑.
(1)試用半徑r表示出儲油灌的容積V,并寫出r的范圍.
(2)當(dāng)圓柱高h(yuǎn)與半徑r的比為多少時,儲油灌的容積V最大?
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用
專題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由表面積S為定值,用r表示出h,可得儲油灌的容積V及r的范圍;
(2)求導(dǎo)函數(shù),確定函數(shù)的極大值即最大值,即可得出結(jié)論.
解答: 解:(1)∵S=2πr2+2πrh+πr2=3πr2+2πrh,∴h=
S-3πr2
2πr
,…(3分)
V=
2
3
πr3r2h
=
rS
2
-
5
6
πr3   (0<r<
3πS
)
;                           …(7分)
(2)∵V′=
S
2
-
5
2
πr2
,令V'=0,得r=
5πS
,列表
r (0,
5πS
)
5πS
(
5πS
,
3πS
)
V'(r) + 0 -
V(r) 極大值即最大值
…(11分)
∴當(dāng)r=
5πS
時,體積V取得最大值,此時h=
5πS
,
∴h:r=1:1.…(13分)
答:儲油灌容積V=
rS
2
-
5
6
πr3   (0<r<
3πS
)
,當(dāng)h:r=1:1時容積V取得最大值.…(15分)
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的最值,考查學(xué)生利用數(shù)學(xué)知識解決實(shí)際問題的能力,確定函數(shù)解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移
π
6
個單位后,得到一個關(guān)于y軸對稱的圖象,則φ的一個可能取值為(  )
A、
π
3
B、
π
6
C、-
π
3
D、-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ex
(x∈R),g(x)=
(2-x)ex
e2

(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)求證:當(dāng)x>1時,函數(shù)y=g(x)的圖象恒在函數(shù)y=f(x)的圖象下方;
(Ⅲ)若k>0,求不等式f′(x)-k(1-x)f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(a+1)x+lnx,g(x)=x2-2bx-
5
4

(Ⅰ)當(dāng)a=0時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a<0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
2
時,對任意x1∈(0,2],存在x2∈[1,2],使得f(x1)≤g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點(diǎn)為B2,右焦點(diǎn)為F2,△B2OF2為等腰直角三角形(O為坐標(biāo)原點(diǎn)),拋物線y2=4
2
x的焦點(diǎn)恰好是該橢圓的右頂點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)B1,B2分別是橢圓的下頂點(diǎn)和上頂點(diǎn),點(diǎn)P是橢圓上異與B1,B2的點(diǎn),求證:直線PB1和直線PB2的斜率之積為定值.
(3)已知圓M:x2+y2=
2
3
的切線l與橢圓相交于C,D兩點(diǎn),那么以CD為直徑的圓是否經(jīng)過定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某種同型號的6瓶飲料中有2瓶已過了保質(zhì)期.
(1)從6瓶飲料中任意抽取1瓶,求抽到?jīng)]過保質(zhì)期的飲料的概率;
(2)從6瓶飲料中隨機(jī)抽取2瓶,求抽到已過保質(zhì)期的飲料的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
r2
b2
=1(a<b<0)的離心率為
1
2
,橢圓C的中心O關(guān)于直線2x-y-5=0的對稱點(diǎn)落在直線x=a2上.
(1)求橢圓C的方程;
(2)設(shè)P(4,0)是橢圓C上關(guān)于x軸對稱的任意兩點(diǎn),連接PN交橢圓C于另一點(diǎn)E,求直線PN的斜率范圍并證明直線ME與x軸相交頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)為豐富教工生活,國慶節(jié)舉辦教工趣味投籃比賽,有A、B兩個定點(diǎn)投籃位置,在A點(diǎn)投中一球得2分,在B點(diǎn)投中一球得3分.其規(guī)則是:按先A后B再A的順序投籃.教師甲在A和B點(diǎn)投中的概率分別是
1
2
1
3
,且在A、B兩點(diǎn)投中與否相互獨(dú)立.
(Ⅰ)若教師甲投籃三次,試求他投籃得分X的分布列和數(shù)學(xué)期望;
(Ⅱ)若教師乙與甲在A、B點(diǎn)投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an=an-1+n,n≥2,為計算這個數(shù)列前10項(xiàng)的和S,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是
 

查看答案和解析>>

同步練習(xí)冊答案