1.設(shè)點M(x,y)滿足不等式組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,點P($\frac{1}{a}$,$\frac{1}$)(a>0,b>0),當(dāng)$\overrightarrow{OP}$•$\overrightarrow{OM}$最大時,點M為(  )
A.(0,2)B.(0,0)C.(4,6)D.(2,0)

分析 由題意作平面區(qū)域,從而化簡$\overrightarrow{OP}$•$\overrightarrow{OM}$=($\frac{1}{a}$,$\frac{1}$)•(x,y)=$\frac{x}{a}$+$\frac{y}$,從而確定最大值時的點即可.

解答 解:由題意作平面區(qū)域如下,

$\overrightarrow{OP}$•$\overrightarrow{OM}$=($\frac{1}{a}$,$\frac{1}$)•(x,y)=$\frac{x}{a}$+$\frac{y}$,
故當(dāng)x,y都有最大值時,
即x=4,y=6時,有最大值;
故選C.

點評 本題考查了線性規(guī)劃的解法及數(shù)形結(jié)合的思想方法應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≤2}\\{x-y≤2}\\{x≥1}\end{array}}\right.$,那么z=2x+y的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.己知$\overrightarrow{a}$=(sinx,cos2x-sin2x),$\overrightarrow$=(cosx,$\frac{\sqrt{3}}{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右頂點分別為A、B,虛軸的端點在以原點為圓心,|AB|為直徑的圓上,P為該雙曲線上一點,若直線PB的斜率為$\sqrt{2}$,則直線PA的斜率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=Asin(x+φ)(A>0)在x=$\frac{π}{3}$處取得最小值,則( 。
A.f(x+$\frac{π}{3}$)是奇函數(shù)B.f(x+$\frac{π}{3}$)是偶函數(shù)C.f(x-$\frac{π}{3}$)是奇函數(shù)D.f(x-$\frac{π}{3}$)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若數(shù)列{an}滿足:a1=0,a2=3且(n-1)an+1=(n+1)an-n十1(n∈N*,n≥2),數(shù)列{bn}滿足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,則數(shù)列{bn}的最大項為第6項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}的通項公式為an=2n-1,則前n項和Sn=(  )
A.n2-1B.n2C.n2+1D.(n+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若$\frac{α}{2}$是第四象限角,且sin$\frac{α}{2}$=-$\frac{\sqrt{3}}{3}$,則cosα=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=$\sqrt{2}$,M為A1B1的中點,則AM與平面AA1C1C所成角的正切值為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案