10.若$\frac{α}{2}$是第四象限角,且sin$\frac{α}{2}$=-$\frac{\sqrt{3}}{3}$,則cosα=$\frac{1}{3}$.

分析 有調(diào)件利用二倍角的余弦公式,求得cosα=1-2${sin}^{2}\frac{α}{2}$ 的值.

解答 解:若$\frac{α}{2}$是第四象限角,且sin$\frac{α}{2}$=-$\frac{\sqrt{3}}{3}$,∴cosα=1-2${sin}^{2}\frac{α}{2}$=1-2•$\frac{1}{3}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點評 本題主要考查二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)某批電子管正品率為$\frac{4}{5}$,次品率為$\frac{1}{5}$,現(xiàn)對這批電子管進行測試,設(shè)第ζ次首次測到正品,則P(ζ=3)等( 。
A.C${\;}_{3}^{2}$($\frac{1}{5}$)2×$\frac{4}{5}$B.($\frac{1}{5}$)2×$\frac{4}{5}$C.C${\;}_{3}^{2}$($\frac{4}{5}$)2×$\frac{1}{5}$D.($\frac{4}{5}$)2×$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)點M(x,y)滿足不等式組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,點P($\frac{1}{a}$,$\frac{1}$)(a>0,b>0),當(dāng)$\overrightarrow{OP}$•$\overrightarrow{OM}$最大時,點M為( 。
A.(0,2)B.(0,0)C.(4,6)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在等比數(shù)列{an}中,a1+a6=33,a3•a4=32,且an+1<an(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若Tn=lga1+lga2+…+lgan,求Tn的最大值及此時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若cos2$\frac{C}{2}$=1-cosAcosB,則△ABC一定是(  )
A.直角三角形B.等腰直角三角形C.等腰三角形D.正三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知tanθ=-2,且sinθ<0,則cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在空間直角坐標(biāo)系Oxyz中,$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$分別是x軸、y軸、z軸的方向向量,設(shè)$\overrightarrow{a}$為非零向量,且<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,則<$\overrightarrow{a}$,$\overrightarrow{k}$>=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知定義在(0,+∞)上的函數(shù)$f(x)=\left\{\begin{array}{l}\frac{1}{x}-1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0<x≤1\\-{x^2}+2ax-(2a-1),\;\;\;x>1\end{array}\right.$(其中$a>\frac{3}{2}$),
(Ⅰ)若當(dāng)且僅當(dāng)b∈(0,1)時,方程f(x)=b有三個不等的實根,求a的值;
(Ⅱ)若函數(shù)g(x)=|f(x)|在$[\frac{1}{2},3a-4]$上的最大值為M(a),求M(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1an=2an+1-1(n∈N*),令bn=an-1.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn=$\frac{{a}_{{2}^{n}+1}}{{a}_{{2}^{n}}}$,求證:c1+c2+…+cn<n+$\frac{7}{24}$.

查看答案和解析>>

同步練習(xí)冊答案