已知焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為,為橢圓的左頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)的直線與橢圓交于,兩點(diǎn).
① 若直線垂直于軸,求的大小;
② 若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請(qǐng)說明理由.

(Ⅰ).
(Ⅱ)(ⅰ)當(dāng)直線垂直于軸時(shí),直線的方程為.
(ⅱ)當(dāng)直線軸不垂直時(shí),不存在直線使得為等腰三角形.

解析試題分析:(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為,且.
由題意可知:,.             2分
解得.            
∴ 橢圓的標(biāo)準(zhǔn)方程為.           3分
(Ⅱ)由(Ⅰ)得.設(shè).
(。┊(dāng)直線垂直于軸時(shí),直線的方程為.
 解得:
(不妨設(shè)點(diǎn)軸上方).        5分
則直線的斜率,直線的斜率.
,得 .
.                 6分
(ⅱ)當(dāng)直線軸不垂直時(shí),由題意可設(shè)直線的方程為.
消去得:.
因?yàn)?點(diǎn)在橢圓的內(nèi)部,顯然.
          8分
因?yàn)?,
所以


.
∴ .    即為直角三角形.                   11分
假設(shè)存在直線使得為等腰三角形,則.
的中點(diǎn),連接,則.
記點(diǎn).

另一方面,點(diǎn)的橫坐標(biāo),
∴點(diǎn)的縱坐標(biāo).

不垂直,矛盾.
所以 當(dāng)直線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.  
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
在平面內(nèi),已知橢圓的兩個(gè)焦點(diǎn)為,橢圓的離心率為 ,點(diǎn)是橢圓上任意一點(diǎn), 且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請(qǐng)說明有幾個(gè)、并求出直角邊所在直線方程?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知橢圓的離心率為,一條準(zhǔn)線

(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),上的點(diǎn),為橢圓的右焦點(diǎn),過點(diǎn)FOM的垂線與以OM為直徑的圓交于兩點(diǎn).
①若,求圓的方程;
②若l上的動(dòng)點(diǎn),求證:點(diǎn)在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點(diǎn)P為線段P1P2的一個(gè)三等分點(diǎn),且雙曲線E的離心率為.

(1)若P1P2點(diǎn)的橫坐標(biāo)分別為x1、x,則x1x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動(dòng)點(diǎn),兩焦點(diǎn),若為鈍角,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為.
(1)求拋物線的方程;
(2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)作直線使得與橢圓都只有一個(gè)交點(diǎn),且分別交其“準(zhǔn)圓”于點(diǎn),求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案