直線
:
繞著它與x軸的交點逆時針旋轉(zhuǎn)
所得直線的方程為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
直線y=3x-3繞著它與x軸的交點順時針旋轉(zhuǎn)
所得的直線方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2007•南京二模)將直線y=-5x+15繞著它與x軸的交點按逆時針方向旋轉(zhuǎn)α角后,恰好與圓(x+2)2+(y+1)2=13相切,則α的一個值是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2010•合肥模擬)已知離心率為
的橢圓C
1:
+=1(a>b>0)的左右焦點分別為F
1、F
2,圓C
2:x
2+y
2=b
2與直線l:
y=(x+4)相切.
(1)求橢圓的標(biāo)準方程;
(2)如果直線l繞著它與x軸的交點旋轉(zhuǎn),且與橢圓相交于P
1、P
2兩點,設(shè)直線P
1F
1與P
2F
1的斜率分別為k
1和k
2,求證:k
1+k
2=0.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知離心率為的橢圓C1:(a>b>0)的左右焦點分別為F1、F2,圓C2:x2+y2=b2與直線l:相切.
(1)求橢圓的標(biāo)準方程;
(2)如果直線l繞著它與x軸的交點旋轉(zhuǎn),且與橢圓相交于P1、P2兩點,設(shè)直線P1F1與P2F1的斜率分別為k1和k2,求證:k1+k2=0.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010年安徽省合肥市高校附中高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知離心率為
的橢圓C
1:
(a>b>0)的左右焦點分別為F
1、F
2,圓C
2:x
2+y
2=b
2與直線l:
相切.
(1)求橢圓的標(biāo)準方程;
(2)如果直線l繞著它與x軸的交點旋轉(zhuǎn),且與橢圓相交于P
1、P
2兩點,設(shè)直線P
1F
1與P
2F
1的斜率分別為k
1和k
2,求證:k
1+k
2=0.
查看答案和解析>>