3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}x+2,({x≤2015})\\ f({x-5}),({x>2015})\end{array}$,則f(2018)=2015.

分析 由已知條件利用分段函數(shù)的性質(zhì)求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}x+2,({x≤2015})\\ f({x-5}),({x>2015})\end{array}$,
∴f(2018)=f(2013)=2013+2=2015.
故答案為:2015.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知y=f(x)是定義域為R的奇函數(shù),且當x>0時,f(x)=3x+x3-5,則函數(shù)y=f(x)的零點的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)x∈R,則“|x-2|<1”是“x2+x-2>0”的充分不必要條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)F為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,P是雙曲線上的點,若它的漸近線上存在一點Q(第一象限內(nèi)),使得$\overrightarrow{FP}$=3$\overrightarrow{PQ}$,則雙曲線離心率的取值范圍為(1,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)x1,x2為函數(shù)f(x)=ax2+(b-1)x+1(a,b∈R,a>0)兩個不同零點.
(1)若x1=1,且對任意x∈R,都有f(2-x)=f(2+x),求f(x);
(2)若b=2a-3,則關(guān)于x的方程f(x)=|2x-a|+2是否存在負實根?若存在,求出該負根的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值$\frac{7}{4}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)h(x)=f(x)-(2t-3)x在[0,1]上的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\vec a$,$\vec b$滿足$|{\vec a}|=2\sqrt{2}|{\vec b}|≠0$,且關(guān)于x的函數(shù)$f(x)=2{x^3}+3|{\vec a}|{x^2}+6\vec a•\vec bx+7$在實數(shù)集R上單調(diào)遞增,則向量$\vec a$,$\vec b$的夾角的取值范圍是(  )
A.$[{0,\left.{\frac{π}{6}}]}\right.$B.$[{0,\left.{\frac{π}{3}}]}\right.$C.$[{0,\left.{\frac{π}{4}}]}\right.$D.$[{\frac{π}{6},\left.{\frac{π}{4}}]}\right.$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.下列說法中正確的個數(shù)為2.
①命題:“若a<0,則a2≥0”的否命題是“若a≥0,則a2<0”;
②若復合命題“p∧q”為假命題,則p,q均為假命題;
③“三個數(shù)a,b,c成等比數(shù)列”是“$b=\sqrt{ac}$”的充分不必要條件;
④命題“若x=y,則sinx=siny”的逆否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)已知數(shù)列{an}為等差數(shù)列,其前n項和為Sn.若a4+a5=0,試分別比較S5與S3、S2與S6的大小關(guān)系.
(2)已知數(shù)列{an}為等差數(shù)列,{an}的前n項和為Sn.證明:若存在正整數(shù)k,使ak+ak+1=0,則Sm=S2k-m(m∈N*,m<2k).
(3)在等比數(shù)列{bn}中,設(shè){bn}的前n項乘積Tn=b1•b2•b3…bn,類比(2)的結(jié)論,寫出一個與Tn有關(guān)的類似的真命題,并證明.

查看答案和解析>>

同步練習冊答案