在△ABC中,已知A=30°,B=120°,b=5,求角C及邊a與c的值.
分析:利用三角形內角和的性質,可求C,利用直線定理可求邊a與c的值.
解答:解:∵A=30°,B=120°,
∴C=180°-A-B=30°;
a
sinA
=
b
sinB
,b=5,
a
1
2
=
5
3
2

∴a=
5
3
3

∵A=C
∴c=
5
3
3
點評:本題考查三角形的內角和,考查正弦定理的運用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知A、B、C成等差數(shù)列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知A=45°,a=2,b=
2
,則B等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知A=60°,
AB
AC
=1,則△ABC的面積為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的長;
(2)求sinA的值.

查看答案和解析>>

同步練習冊答案