曲線y=4x-x2上兩點A(4,0)、B(2,4),若曲線上一點P處的切線恰好平行于弦AB,則點P的坐標是
A.(3,3)
B.(1,3)
C.(6,-12)
D.(2,4)
科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)綜合題 題型:022
給出下列4個命題:
①直線到的角是;
②把直線繞原點按逆時針方向旋轉(zhuǎn),使它與圓x2+y2+-2y+3=0相切,
則直線旋轉(zhuǎn)的最小正角是;
③曲線y=4x-x2上取兩點A(4,0),B(2,4),若曲線上一點P處的切線恰好平行于弦AB,則點P的坐標為(3,3);
④已知雙曲線mx2-2my2=4的一條準線方程為y=4,則其漸近線方程為.
其中錯誤的命題有______________.(把你認為錯誤命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:遼寧省撫順市重點高中協(xié)作校2009-2010學(xué)年高二上學(xué)期期末考試數(shù)學(xué)文 題型:013
曲線y=4x-x2上有兩點A(4,0),B(2,4),若曲線上一點P處的切線恰好平行于弦AB,則點P的坐標是
(3,3)
(1,3)
(6,-12)
(2,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:013
曲線y=4x-x2上兩點A(4,0),B(2,4),若曲線上一點P處的切線恰好平行于弦AB,則點P的坐標是
[ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com