(2013•浙江)在空間中,過點A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個不同的平面,對空間任意一點P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°
A
設(shè)P1=fα(P),則根據(jù)題意,得點P1是過點P作平面α垂線的垂足
∵Q1=fβ[fα(P)]=fβ(P1),
∴點Q1是過點P1作平面β垂線的垂足
同理,若P2=fβ(P),得點P2是過點P作平面β垂線的垂足
因此Q2=fα[fβ(P)]表示點Q2是過點P2作平面α垂線的垂足
∵對任意的點P,恒有PQ1=PQ2,
∴點Q1與Q2重合于同一點
由此可得,四邊形PP1Q1P2為矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角
∵∠P1Q1P2是直角,∴平面α與平面β垂直
故選:A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:;
(Ⅱ)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知三棱柱的側(cè)棱與底面垂直,且
,,,點、、分別為、、的中點.
(1)求證:平面;
(2)求證:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐P—ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點.

(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知為平行四邊形,,,點上,,相交于.現(xiàn)將四邊形沿折起,使點在平面上的射影恰在直線上.
(1)求證:平面;
(2)求折后直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是兩個不同的平面,是平面之外的兩條不同直線,給出四個論斷:
  ②  ③  、。 以其中三個論斷作為條件,余下一個論斷作為結(jié)論,寫出你認為正確的一個命題:________________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點,下面四個結(jié)論中不成立的(  )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDE⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同直線,α,β是兩個不同的平面,下列命題正確的是( 。
A.m∥α,n∥β且α∥β,則m∥n
B.m⊥α,n⊥β且α⊥β,則m⊥n
C.m⊥α,n?β,m⊥n,則α⊥β
D.m?α,n?α,m∥β,n∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線//平面,直線平面,則( ).
A.//B.異面 C.相交 D.無公共點

查看答案和解析>>

同步練習(xí)冊答案