13.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{i}{2-i}$等于(  )
A.-$\frac{1}{5}$+$\frac{2}{5}$iB.$\frac{1}{5}$-$\frac{2}{5}$iC.-$\frac{2}{5}$+$\frac{1}{5}$iD.$\frac{2}{5}$-$\frac{1}{5}$i

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:$\frac{i}{2-i}$=$\frac{i(2+i)}{(2-i)(2+i)}=\frac{-1+2i}{5}=-\frac{1}{5}+\frac{2}{5}i$,
故選:A.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)變量x、y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,則z=32x-y的最大值為( 。
A.$\root{3}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)z=(cosθ-$\frac{3}{5}$)+(sinθ-$\frac{4}{5}$)i是純虛數(shù),則tan(θ-$\frac{π}{4}$)的值為( 。
A.-7B.-$\frac{1}{7}$C.7D.-7或-$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a=$\int_1^4{\frac{2}{{\sqrt{x}}}}$dx,求$(1-x){({\frac{a}{2}+x})^5}$的展開式中含x2項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了檢查一批光盤的質(zhì)量,從中抽取了500張進行檢測,則這個問題中的樣本容量是( 。
A.500張光盤B.500C.500張光盤的質(zhì)量D.光盤的全體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=3sin(2x+$\frac{π}{3}$)的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下:
①圖象C關(guān)于點($\frac{π}{3}$,0)對稱;
②圖象C關(guān)于直線x=$\frac{11π}{12}$對稱;
③由圖象C向右平移$\frac{π}{6}$個單位長度可以得到y(tǒng)=3sin2x的圖象;
④函數(shù)f(x)在區(qū)間(-$\frac{π}{6}$,$\frac{5π}{6}$)內(nèi)是減函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為$\frac{π}{2}$.
其中正確的結(jié)論序號是①③.(把你認為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.小明射擊一次擊中10環(huán)的概率為0.8,則小明連續(xù)射擊3次至少擊中一次10環(huán)的概率為0.992.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.化簡:
(1)cos($\frac{π}{6}$-α)-sin($\frac{π}{3}$-α);
(2)sin15°+tan60°cos15°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.l1的傾斜角為60°,l2經(jīng)過點M(1,$\sqrt{3}$),N(-2,-2$\sqrt{3}$),則l1與l2的關(guān)系是平行或重合.

查看答案和解析>>

同步練習(xí)冊答案