10.如圖,在三棱錐DABC中,若AB=CB,AD=CD,E是AC的中點(diǎn),則下列命題中正確的有③(寫出全部正確命題的序號(hào)).
①平面ABC⊥平面ABD;
②平面ABD⊥平面BCD;
③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;
④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.

分析 證明平面ABC⊥平面BDE,且平面ACD⊥平面BDE,即可得出結(jié)論.

解答 解:因?yàn)锳B=CB,且E是AC的中點(diǎn),所以BE⊥AC,
同理有DE⊥AC,于是AC⊥平面BDE.因?yàn)锳C在平面ABC內(nèi),所以平面ABC⊥平面BDE.
又由于AC?平面ACD,所以平面ACD⊥平面BDE,
故答案為③.

點(diǎn)評(píng) 本題考查平面與平面垂直的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.圓(x+2)2+(y+3)2=2的圓心和半徑分別是(  )
A.(-2,3),1B.(2,-3),3C.(-2,-3),$\sqrt{2}$D.(2,-3),$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在?ABCD中,$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,3),對(duì)角線交點(diǎn)為O,則$\overrightarrow{CO}$等于(-$\frac{1}{2}$,-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算:
(1)(-3)×4$\overrightarrow a$;
(2)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$
(3)$(2\overrightarrow a+3\overrightarrow b-\overrightarrow c)-(3\overrightarrow a-2\overrightarrow b+\overrightarrow c)$
(4)$\frac{1}{12}[{2({2\overrightarrow a+8\overrightarrow b})-4({4\overrightarrow a-2\overrightarrow b})}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.證明函數(shù)f(x)=3x+2在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2+x-2,g(x)=x3+x2+3x-2
(1)若函數(shù)f(x)在(0,+∞)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[1,3],不等式f(x)<g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知a=${∫}_{0}^{\frac{π}{2}}$($\frac{1}{2}$-sin2$\frac{x}{2}$)dx,則(ax+$\frac{1}{2ax}$)9展開式中,x的一次項(xiàng)系數(shù)為( 。
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{AB}$,且對(duì)AB邊上任意一點(diǎn)N,恒有$\overrightarrow{NB}$•$\overrightarrow{NC}$≥$\overrightarrow{MB}$•$\overrightarrow{MC}$,則有( 。
A.AB⊥BCB.AB⊥ACC.AB=ACD.AC=BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)$f(x)=\frac{{{a^x}+1}}{{{a^x}-b}}(0<a<1)$的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)g(x)=loga(x+b)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案