5.過原點且傾斜角為60°的直線被圓x2+y2-4x=0所截得的弦長為( 。
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.$2\sqrt{3}$

分析 由題意求出直線方程,再把圓的方程化為一般式,求出圓心坐標(biāo)與半徑r,利用點到直線的距離公式求出圓心到已知直線的距離d,利用垂徑定理及勾股定理即可求出截得的弦長.

解答 解:∵直線過原點且傾斜角為60°,
∴直線的方程為:y=$\sqrt{3}$x,即$\sqrt{3}$x-y=0,
由圓x2+y2-4x=0得,(x-2)2+y2=4,
則圓心(2,0),且r=2,
∵圓心(2,0)到直線$\sqrt{3}$x-y=0的距離d=$\frac{2\sqrt{3}}{\sqrt{3+1}}$=$\sqrt{3}$,
∴直線被圓截得的弦長為2$\sqrt{4-1}$=2,
故選:B.

點評 本題考查了直線與圓的位置關(guān)系,涉及的知識有:點到直線的距離公式,圓的標(biāo)準(zhǔn)方程,垂徑定理,以及勾股定理,熟練運用垂徑定理及勾股定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=|x-1|+|2x-1|.
(Ⅰ)求不等式f(x)≥2的解集;
(Ⅱ)若?x∈R,不等式f(x)≥a|x|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線2x+(y-3)m-4=0(m∈R)恒過定點P,若點P平分圓x2+y2-2x-4y-4=0的弦MN,則弦MN所在的直線方程是x+y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點O是三角形ABC的邊BC靠近B的一個三等分點,過點O的直線交直線AB、AC分別于M、N;$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}$,則$\frac{2}{m}+\frac{1}{n}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知過點P(0,2)的直線l與圓(x-1)2+y2=5相切,且與直線ax-2y+1=0垂直,則a=( 。
A.2B.4C.-4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:kx+y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線l交x軸負(fù)半軸于A,交y軸負(fù)半軸于B,記△AOB的面積為S,求S的最小值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>1),F(xiàn)1,F(xiàn)2為橢圓的兩個焦點,且F1,F(xiàn)2到直線$\frac{x}{a}$$+\frac{y}$=1的距離之和為$\sqrt{3}$b,則其離心率e=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題

下列函數(shù)中,既是奇函數(shù),又在上為增函數(shù)的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)a1,a2,a3為正數(shù),求證:$\frac{{a}_{1}{a}_{2}}{{a}_{3}}$+$\frac{{a}_{2}{a}_{3}}{{a}_{1}}$+$\frac{{a}_{3}{a}_{1}}{{a}_{2}}$≥a1+a2+a3

查看答案和解析>>

同步練習(xí)冊答案