(本小題滿分14分)
已知數(shù)列的前項(xiàng)和是,滿足.
(1)求數(shù)列的通項(xiàng)及前項(xiàng)和;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和;
(3)若對任意的,恒有成立,求實(shí)數(shù)的取值范圍.

解:(1)當(dāng)時(shí),, ……1分
當(dāng)時(shí), ……2分

……3分
數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列.
……4分
.……5分
(2) ……6分
……7分
……8分
……9分
(3) 由恒成立
恒成立
恒成立……10分
必須且只須滿足恒成立……11分
在R上恒成立……12分
,……13分
解得.……14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分14分)
在數(shù)列中,a1=2,b1=4,且成等差數(shù)列,成等比數(shù)列(
(Ⅰ)求a2,a3a4b2,b3,b4,由此猜測,的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列首項(xiàng)為,公差為,等比數(shù)列首項(xiàng)為,公比為,其中都是大于1的正整數(shù),且,對于任意的,總存在,使得成立,則                                (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列,其通項(xiàng)公式為,則其前n項(xiàng)和在n為(   )時(shí)獲得最小值
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過曲線上一點(diǎn)作曲線的切線軸于點(diǎn),又過軸的垂線交曲線于點(diǎn),然后再過作曲線的切線軸于點(diǎn),又過軸的垂線交曲線于點(diǎn),,以此類推,過點(diǎn)的切線 與軸相交于點(diǎn),再過點(diǎn)軸的垂線交曲線于點(diǎn)N).

(1) 求及數(shù)列的通項(xiàng)公式;
(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達(dá)式;
(3) 在滿足(2)的條件下, 若數(shù)列的前項(xiàng)和為,求證:N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}的前n項(xiàng)和Sn,若a3+ a7- a10="8," a11- a4=4,則S13等于
A.152B.154C.156D.158

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的前項(xiàng)和為,若,則等于
A.72B.54C.36D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


.表1中數(shù)陣稱為“森德拉姆篩”,其特點(diǎn)是每行每列都是等差數(shù)列,則表中數(shù)字206共出現(xiàn)        次。
2
3
4
5
6
7

3
5
7
9
11
13

4
7
10
13
16
19

5
9
13
17
21
25

6
11
16
21
26
31

7
13
19
25
31
37








 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
設(shè)數(shù)列的各項(xiàng)均為正數(shù),若對任意的正整數(shù),都有成等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求證數(shù)列是等差數(shù)列;
(Ⅱ)如果,求數(shù)列。的前。項(xiàng)和。

查看答案和解析>>

同步練習(xí)冊答案