1.若x、y滿足約束條件$\left\{\begin{array}{l}x≤a\\ y≤2\\ x+y≥2\end{array}\right.$,若z=x+2y的最大值是6,則z的最小值為( 。
A.2B.3C.4D.5

分析 本題考查的知識(shí)點(diǎn)是簡(jiǎn)單的線性規(guī)劃,我們可以先畫出足約束條件$\left\{\begin{array}{l}x≤a\\ y≤2\\ x+y≥2\end{array}\right.$的平面區(qū)域,再根據(jù)目標(biāo)函數(shù)z=x+2y的最大值是6,求出點(diǎn)的橫坐標(biāo)即可.

解答 解:滿足約束條件$\left\{\begin{array}{l}x≤a\\ y≤2\\ x+y≥2\end{array}\right.$的平面區(qū)域如下圖:
∵目標(biāo)函數(shù)z=x+2y的最大值是6,
可得$\left\{\begin{array}{l}{x+2y=6}\\{y=2}\end{array}\right.$,可得A(2,2).
∴當(dāng)x=2,y=2時(shí),Z取最大值6,
A(2,2)在直線x=a上,可得a=2,
故選:A.

點(diǎn)評(píng) 用圖解法解決線性規(guī)劃問題時(shí),分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點(diǎn)的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某獨(dú)立重復(fù)實(shí)驗(yàn)中事件A每次發(fā)生的概率為0.6,現(xiàn)實(shí)驗(yàn)做了24次,則A發(fā)生14或15次的概率最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算不定積分∫(4x3-3x2+2x-1)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖中的三個(gè)直角三角形是一個(gè)體積為35cm3的幾何體的三視圖,則側(cè)視圖中的h( 。
A.5cmB.6cmC.7cmD.8cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.微信是騰訊公司推出的一款手機(jī)通訊軟件,它支持發(fā)送語音、視頻、圖片和文字等,一推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信朋友圈銷售商品的人(被稱為微商).經(jīng)調(diào)查,年齡在40歲以下(不包括40歲)的微信用戶每天使用微信的時(shí)間不低于8小時(shí)的概率為$\frac{3}{5}$,年齡在40歲以上(包括40歲)的微信用戶每天使用微信的時(shí)間不低于8小時(shí)的概率為p,將每天使用微信的時(shí)間不低于8小時(shí)的微信用戶稱為“微信狂”,若甲(21)歲、乙(36歲)、丙(48歲)三人中有且僅有一人是“微信狂”的概率為$\frac{28}{75}$
(1)求甲、乙、丙三人中至少有兩人是“微信狂”的概率;
(2)記甲、乙、丙三人中是“微信狂”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,D為BC的中點(diǎn),O在AD上且AO=$\frac{1}{4}$AD,AB=2,AC=6,則$\overrightarrow{BC}$•$\overrightarrow{AO}$等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知單位向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條相互垂直的半徑.若該幾何體的體積是$\frac{28π}{3}$,則它的表面積是(  )
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)偶函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,△KLM為等腰直角三角形,∠KML=90°,KL=1,則f($\frac{1}{12}$)的值為( 。
A.$\frac{\sqrt{6}-\sqrt{2}}{8}$B.$\frac{\sqrt{2}+\sqrt{6}}{8}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案