在曲線
x=t+
1
t
y=t-
1
t
(t為參數(shù))
上的點(diǎn)是(  )
分析:把參數(shù)方程化為直角坐標(biāo)方程,結(jié)合所給的選項(xiàng),可得結(jié)論.
解答:解:把曲線
x=t+
1
t
y=t-
1
t
(t為參數(shù))
消去參數(shù),化為直角坐標(biāo)方程為 x2-y2=4,表示一條雙曲線,
結(jié)合所給的選項(xiàng),只有B滿足此條件,
故選B.
點(diǎn)評(píng):本題主要考查把參數(shù)方程化為直角坐標(biāo)方程的方法,判斷一個(gè)點(diǎn)是否在所給的曲線上,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn).
(1)將C1,C2化為普通方程;
(2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn),求過(guò)OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn),求過(guò)OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn).
(1)將C1,C2化為普通方程;
(2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案