已知在△ABC中,有
CB
CA
<0,則下列說法中:
①△ABC為鈍角三角形;   
②c2>a2+b2;   
③cosAcosB>sinAsinB.
正確說法的序號是
 
.(填上所有正確說法的序號)
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:
CB
CA
<0,利用數(shù)量積的定義可得|
CB
| |
CA
|cosC<
0,可得C是鈍角.再結(jié)合余弦定理、三角形的內(nèi)角和定理、兩角和差的余弦公式即可判斷出.
解答: 解:①∵
CB
CA
<0,
|
CB
| |
CA
|cosC<
0,
∴cosC<0,
∵C∈(0,π),
∴C是鈍角.
∴△ABC為鈍角三角形,正確
②由余弦定理可得cosC=
a2+b2-c2
2ab
<0,∴c2>a2+b2;正確
③∵cosC<0,∴-cos(A+B)<0,∴cosAcosB>sinAsinB.正確
綜上可得:正確說法的序號是①②③.
故答案為:①②③.
點(diǎn)評:本題考查了數(shù)量積的定義、余弦定理、三角形的內(nèi)角和定理、兩角和差的余弦公式,考查了推理能力和計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga(x2-ax+3)(a>0且a≠1),滿足對任意實(shí)數(shù)x1、x2,當(dāng)x2>x1
a
2
時(shí),f(x1)-f(x2)<0,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+
2tanx
1+tan2x
-(1+cos2x)•tan2x,給出下列四個(gè)命題:
①函數(shù)f(x)的最小正周期為π,且在[
π
8
,
5
8
π]上遞減;
②直線x=
π
8
是函數(shù)f(x)的圖象的一條對稱軸;
③對稱中心(kπ+
π
8
,0);
④若x∈[0,
π
8
]時(shí)函數(shù)f(x)的值域?yàn)閇1,
2
].
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx,g(x)=
lnx
x
,如果關(guān)于x的方程f(x)=g(x)在區(qū)間[
1
e
,e]內(nèi)有兩個(gè)實(shí)數(shù)解,那么實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(ωx+
π
6
)的圖象與直線y=2的兩個(gè)相鄰交點(diǎn)的距離等于π,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=
2
. 則三棱柱ABD-A1B1D1的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={3,sinα},B={2,cosα},若A∩B={-
2
2
},則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-3,4),若|
b
|=5,
b
a
,則向量
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=sin30°,則導(dǎo)數(shù)y′=( 。
A、
3
2
B、-
1
2
C、
1
2
D、0

查看答案和解析>>

同步練習(xí)冊答案