已知函數(shù)f(x)=sinx+cosx.
(1)求f(
π
4
)的值          
(2)求f(x)的最大值及f(x)取得最大值時x的取值范圍.
考點:兩角和與差的正弦函數(shù),正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)把x=
π
4
代入函數(shù)解析式即可.
(2)根據(jù)兩角和公式對函數(shù)解析式化簡,根據(jù)正弦函數(shù)的性質(zhì)求得其最大值,及此時x的值的集合.
解答: 解:(1)f(
π
4
)=sin
π
4
+cos
π
4
=
2
2
+
2
2
=
2

(2)f(x)=sinx+cosx=
2
sin(x+
π
4
),
∴函數(shù)的最大值為
2
,此時x+
π
4
=2kπ+
π
2
,x=2kπ+
π
4
,k∈Z,
∴f(x)的最大值為
2
,取得最大值時x的集合為{x|x=2kπ+
π
4
(k∈Z)}.
點評:本題主要考查了三角函數(shù)圖象與性質(zhì),兩角和公式的應(yīng)用.考查了學生對三角函數(shù)基礎(chǔ)知識的掌握.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某幾何體三視圖如圖所示,若它的體積為80,則x=(  )
A、
32
π
B、
16
π
C、
8
π
D、
4
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a、b、c∈R,a<b<0,則下列不等式一定成立的是( 。
A、a2<b2
B、ac2<bc2
C、
1
a
1
b
D、
1
a-b
1
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,命題p:函數(shù)y=ax為減函數(shù).命題q:當x∈[
1
2
,2]時,函數(shù)f(x)=x+
1
x
1
a
恒成立,如果p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

變量x,y滿足
x-4y+3≤0
3x+5y-25≤0
x≥1

①設(shè)z=
y
x
,求z的最小值;
②設(shè)z=x2+y2求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若點A(2,2)在矩陣M=
cosa      -sina
sina        cosa
對應(yīng)變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣.
(2)已知矩陣A=
2    1
4    2
,向量
β
=
1
7
,求A50
β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品按行業(yè)生產(chǎn)標準分成8個等級,等級系數(shù)ξ依次為1,2,…,8,其中ξ≥5為標準A,ξ≥3為標準B,產(chǎn)品的等級系數(shù)越大表明產(chǎn)品的質(zhì)量越好,已知某廠執(zhí)行標準B生產(chǎn)該產(chǎn)品,且該廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標準.從該廠生產(chǎn)的產(chǎn)品中隨機抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
  ξ  3  4  5  6  7  8
 件數(shù)  9  6  6  3  3  3
該行業(yè)規(guī)定產(chǎn)品的等級系數(shù)ξ≥7的為一等品,等級系數(shù)5≤ξ<7的為二等品,等級系數(shù)3≤ξ<5的為三等品.
(1)試分別估計該廠生產(chǎn)的產(chǎn)品的一等品率、二等品率和三等品率;
(2)已知該廠生產(chǎn)一件一等品的利潤為10元,生產(chǎn)一件二等品或三等品的利潤為2元.
用這個樣本的頻率分布估計總體分布,將頻率視為概率,從該廠生產(chǎn)的產(chǎn)品中任取三件,其總利潤記為Y,求Y的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1+an=4n+4,n∈N*
(1)若a1=1,試求數(shù)列{an}的通項公式;
(2)是否存在a1,使{an}為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
).
(1)求數(shù)列{an}的通項公式;
(2)若Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn

查看答案和解析>>

同步練習冊答案