已知函數(shù)有且僅有兩個不同的零點,,則( 。
A.當時,
B.當時,,
C.當時,
D.當時,,
B

試題分析:函數(shù)求導,得:,得兩個極值點:因為函數(shù)f(x)過定點(0,-2),有且僅有兩個不同的零點,所以,可畫出函數(shù)圖象如下圖:因此,可知,,只有B符合.
.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;(2)若,設,
(ⅰ)求證g(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

,函數(shù) 
(1)當時,求曲線處的切線方程;
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)當時,求函數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)(其中).
(1) 當時,求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當時,函數(shù)上有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求實數(shù)的值;
(2)若關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(3)若,使成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。
(Ⅰ)若是增函數(shù),求b的取值范圍;
(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)是自然對數(shù)的底數(shù)).
(1)若曲線處的切線也是拋物線的切線,求的值;
(2)當時,是否存在,使曲線在點處的切線斜率與 在
上的最小值相等?若存在,求符合條件的的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是實數(shù),函數(shù),分別是的導函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.
(Ⅰ)設,若函數(shù)在區(qū)間上單調(diào)性一致,求實數(shù)的取值范圍;
(Ⅱ)設,若函數(shù)在以為端點的開區(qū)間上單調(diào)性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(I)證明當 
(II)若不等式取值范圍.

查看答案和解析>>

同步練習冊答案