y=(sinx-cosx)2-1是

[     ]

A.最小正周期為2π的偶函數(shù)
B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的偶函數(shù)
D.最小正周期為π的奇函數(shù)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列對(duì)于函數(shù)y=sinx+cosx的命題中,正確命題的序號(hào)為
 

①存在α∈(0,
π
2
)
,使f(α)=
4
3
;②存在α∈(0,
π
2
)
,使f(x+α)=f(x+3α);③存在θ∈R使函數(shù)f(x+θ)的圖象關(guān)于y軸對(duì)稱;④函數(shù)f(x)的圖象關(guān)于點(diǎn)(
3
4
π,0)
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx-cosx的圖象可由y=sinx+cosx的圖象向右平移
 
個(gè)單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是區(qū)間D⊆[0,+∞)上的增函數(shù),若f(x)可表示為f(x)=f1(x)+f2(x),且滿足下列條件:①f1(x)是D上的增函數(shù);②f2(x)是D上的減函數(shù);③函數(shù)f2(x)的值域A⊆[0,+∞),則稱函數(shù)f(x)是區(qū)間D上的“偏增函數(shù)”.
(1)(i) 問函數(shù)y=sinx+cosx是否是區(qū)間(0,
π
4
)
上的“偏增函數(shù)”?并說明理由;
(ii)證明函數(shù)y=sinx是區(qū)間(0,
π
4
)
上的“偏增函數(shù)”.
(2)證明:對(duì)任意的一次函數(shù)f(x)=kx+b(k>0),必存在一個(gè)區(qū)間D⊆[0,+∞),使f(x)為D上的“偏增函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx+cosx的最小正周期和最大值分別是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|sinx|+|cosx|(x∈R)的單調(diào)減區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案