【題目】函數(shù)滿足以下4個條件.
①函數(shù)的定義域是,且其圖象是一條連續(xù)不斷的曲線;
②函數(shù)在不是單調(diào)函數(shù);
③函數(shù)是偶函數(shù);
④函數(shù)恰有2個零點.
(1)寫出函數(shù)的一個解析式;
(2)畫出所寫函數(shù)的解析式的簡圖;
(3)證明滿足結(jié)論③及④.
【答案】(1)見解析 (2)見解析 (3)見解析
【解析】
(1)根據(jù)常見函數(shù)的性質(zhì)寫出滿足條件的函數(shù)即可.
(2)根據(jù)常見函數(shù)的圖像與函數(shù)的圖像變換方法畫圖即可.
(3)根據(jù)函數(shù)滿足定義域關(guān)于原點對稱,且即可證明為偶函數(shù).直接求解函數(shù)的零點即可證明函數(shù)有兩個零點.
本題為開放性題,答案不唯一,只需寫出符合條件的函數(shù)即可,提供以下5個函數(shù)僅供參考.
(1) (2)
(3) (4)
(5)
下面以函數(shù)為例給出證明:
證明:的定義域為R
因為對定義域的每一個x,都有
所以函數(shù)是偶函數(shù),
又因為當時,
解得
所以當時,函數(shù)只有一個零點,
又因為函數(shù)是偶函數(shù),
所以函數(shù)恰有2個零點.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.
(1)判斷函數(shù)是否為“依附函數(shù)”,并說明理由;
(2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某個比賽安排4名志愿者完成6項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式有多少種( )
A.7200種B.4800種C.2640種D.1560種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若存在使得,求實數(shù)的取值范圍;
(Ⅲ)若當時恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
為描述該超級快艇每小時航行費用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)試從中確定最符合實際的函數(shù)模型,并求出相應的函數(shù)解析式;
(2)該超級快艇應以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國內(nèi)某汽車品牌一個月內(nèi)被消費者投訴的次數(shù)用表示,據(jù)統(tǒng)計,隨機變量的概率分布如下:
0 | 1 | 2 | 3 | |
(1)求的值;
(2)若每個月被消費者投訴的次數(shù)互不影響,求該汽車品牌在五個月內(nèi)被消費者投訴3次的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且滿足,當時,,則函數(shù)在區(qū)間上所有零點的個數(shù)為( )
A.0B.2C.4D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】生活中萬事萬物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點中也有相關(guān)點,現(xiàn)在定義:平面內(nèi)如果兩點、都在函數(shù)的圖像上,而且滿足、兩點關(guān)于原點對稱,則稱點對(、)是函數(shù)的“相關(guān)對稱點對”(注明:點對(、)與(、)看成同一個“相關(guān)對稱點對”).已知函數(shù),則這個函數(shù)的“相關(guān)對稱點對”有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,摩天輪的半徑為,點距地面的高度為,摩天輪按逆時針方向作勻速運動,且每轉(zhuǎn)一圈,摩天輪上點的起始位置在最高點.
(1)試確定點距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時間(單位:)的函數(shù)關(guān)系式;
(2)在摩天輪轉(zhuǎn)動一圈內(nèi),有多長時間點距離地面超過?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com