【題目】已知函數(shù) ,其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若存在使得,求實數(shù)的取值范圍;
(Ⅲ)若當(dāng)時恒有,求實數(shù)的取值范圍.
【答案】(Ⅰ)見解析.(Ⅱ).(Ⅲ).
【解析】試題分析:(Ⅰ)求得函數(shù)的導(dǎo)數(shù),得到的根,分類討論,即可求解函數(shù)的單調(diào)區(qū)間;
(Ⅱ)令,轉(zhuǎn)化為在上有解,即在上有解,又由關(guān)于單調(diào)遞增,求得實數(shù)的取值范圍;
(Ⅲ)由題意,得到,取得,得得,由(Ⅱ)知,分類討論即可求解實數(shù)的取值范圍.
試題解析:
(Ⅰ) .
令得或.
當(dāng)時,,在上單調(diào)遞增;
當(dāng)時,令得或,從而在,上單調(diào)遞增,在上單調(diào)遞減.
(Ⅱ) ,令,
則 ,當(dāng)且僅當(dāng)取得等號.
注意到 ,
原問題轉(zhuǎn)化為在上有解,即在上有解,又關(guān)于單調(diào)遞增,從而,
又,綜合得.
(Ⅲ)令 ,
,
得,由(Ⅱ)知.
當(dāng),即時,,又,從而當(dāng)時恒有,
當(dāng)時,存在使得,即,即,
解得,,(舍去).
從而當(dāng)時,此時,矛盾.
綜上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(點均在第一象限),與軸,軸分別交于兩點,且滿足(其中為坐標(biāo)原點).證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的通項公式是(表示不超過實數(shù)的最大整數(shù)).
(1)證明:、、、、都是數(shù)列的項;
(2)是否是數(shù)列的項,證明你的結(jié)論;
(3)證明:有無窮多個2的正整數(shù)冪是數(shù)列的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一種候鳥每年都按一定的路線遷徙,飛往繁殖地產(chǎn)卵,科學(xué)家經(jīng)過測量發(fā)現(xiàn)候鳥的飛行速度可以表示為函數(shù),單位是,其中表示候鳥每分鐘耗氧量的單位數(shù),為表示測量過程中候鳥每分鐘的耗氧偏差.(參考數(shù)據(jù):,,)
(1)若,候鳥停下休息時,它每分鐘的耗氧量為多少個單位?
(2)若雄鳥的飛行速度為,雌鳥的飛行速度為,那么此時雄鳥每分鐘的耗氧量是雌鳥每分鐘耗氧量的多少倍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點,,,,為橢圓的四個頂點(如圖),直線過右頂點且垂直于軸.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)為上一點(軸上方),直線,分別交橢圓于,兩點,若,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若對任意的實數(shù),都有成立,求實數(shù)的取值范圍;
(Ⅲ)若,的最大值是,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且為自然對數(shù)的底數(shù))
(1)判斷函數(shù)的單調(diào)性并證明;
(2)判斷函數(shù)的奇偶性并證明;
(3)是否存在實數(shù),使不等式對一切都成立?若存在,求出的范圍,若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com