給出下列命題:
①任意實數(shù)α,sinα=
1-cos2α
成立;
②函數(shù)y=tan(2x+
π
3
)的最小正周期為π;
③x=
π
8
是函數(shù)y=sin(2x+
π
4
)的圖象的一條對稱軸方程;
④存在實數(shù)α,β,使sin(α-β)=sinα-sinβ成立.
其中正確的命題是
 
.(填上所有正確的序號)
考點:命題的真假判斷與應用
專題:計算題,簡易邏輯
分析:利用同角三角函數(shù)關系、三角函數(shù)的對稱性、兩角和與差的公式,即可得出結論.
解答: 解:①任意實數(shù)α,sinα=
1-cos2α
或sinα=-
1-cos2α
,故不正確;
②函數(shù)y=tan(2x+
π
3
)的最小正周期為
π
2
,故不正確;
③x=
π
8
時,y=sin(2x+
π
4
)取得最大值,∴x=
π
8
是函數(shù)y=sin(2x+
π
4
)的圖象的一條對稱軸方程,故正確;
④存在實數(shù)β=0,使sin(α-β)=sinα-sinβ成立,故正確.
故答案為:③④.
點評:本題主要考查同角三角函數(shù)關系、兩角和與差的公式和三角函數(shù)的對稱性.考查三角函數(shù)公式的綜合應用.三角函數(shù)的公式比較多,很容易記混,平時要注意積累.是基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

全稱命題“?a∈N*,a有一個是正因數(shù)”的否定是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角△ABC中,AB=BC=2,D,E分別是AB,AC的中點,將△ADE沿線段DE折起到△A′DE,使平面A′DE⊥平面DBCE,當M是DE的中點時,證明:BM⊥面A′CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)y=kx+1在R上是增函數(shù),命題q:曲線y=x2+(2k-3)x+1與x軸交于不同的兩點,如果p∧q是假命題,p∨q是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:
x=tcosα
y=1+tsinα
(t為參數(shù),
π
4
≤α≤
π
3
)與圓ρ=2
2
sin(θ+
π
4
)(θ為參數(shù))相交所得的弦長的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在一次研究性學習中發(fā)現(xiàn),以下4個式子的值都等于同一個常數(shù)
3
4

①sin223°+cos7°-sin23°•cos7°=
3
4

②sin2(-17°)+cos247°-sin(-17°)•cos47°=
3
4

③sin215°+cos215°-sin15°•cos15°=
3
4

④sin253°+cos2(-23°)-sin53°•cos(-23°)=
3
4

請將該同學的發(fā)現(xiàn)推廣為一般的三角恒等式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程選做題)已知極坐標的極點與平面直角坐標系的原點重合,極軸與x軸的正半軸重合,且長度單位相同.圓C的參數(shù)方程為
x=1+3cosα
y=-1+3sinα
為參數(shù)),點Q的極坐標為(
2
,
π
4
).若點P是圓C上的任意一點,P,Q兩點間距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β為銳角,且cosα=
5
13
,cos(α+β)=-
4
5
,則cosβ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|x+1|+|x+2|+|x+3|+…+|x+2012|+|x-1|+|x-2|+|x-3|+…+|x-2012|(x∈R),且f(a2-3a+2)=f(a-1),則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案