8.平行線3x+4y-9=0和6x+my-1=0的距離是$\frac{17}{10}$.

分析 利用兩直線平行求得m的值,化為同系數(shù)后由平行線間的距離公式得答案.

解答 解:由直線3x+4y-9=0和6x+my-1=0平行,得m=8.
∴直線3x+4y-9=0化為6x+8y-18=0.
∴平行線3x+4y-9=0和6x+my-1=0的距離是$\frac{|18-1|}{\sqrt{36+64}}$=$\frac{17}{10}$.
故答案為:$\frac{17}{10}$.

點(diǎn)評(píng) 本題考查了兩條平行線間的距離公式,利用兩平行線間的距離公式求距離時(shí),一定要化為同系數(shù)的方程,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式(x-1)2>4的解集是{x|x<-1或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+mx+n以(0,a)為切點(diǎn)的切線方程是2x+y-2=0
(Ⅰ)求實(shí)數(shù)m,n的值;
(Ⅱ)若方程f(x)=x2+b在[-$\frac{3}{2}$,3]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(ωx+ϕ),ω>0,0≤ϕ≤π是R上的偶函數(shù),且最小正周期為π
(1)求f(x)的解析式;
(2)用“五點(diǎn)法”作出函數(shù)f(x)的一個(gè)周期內(nèi)的圖象;
(3)求g(x)=f(x+$\frac{π}{6}$)的對(duì)稱軸及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐P-ABCD中,PC⊥平面ABCD,DC∥AB,DC=2,AB=4,BC=2$\sqrt{3}$,∠CBA=30°.
(1)求證:AC⊥PB;
(2)若PC=2,點(diǎn)M是棱PB上的點(diǎn),且CM∥平面PAD,求BM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+alnx的圖象與直線l:y=-2x+c相切,切點(diǎn)的橫坐標(biāo)為1.
(1)求函數(shù)f(x)的表達(dá)式和直線l的方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x+1在(a,2a+7)上有最小值,則實(shí)數(shù)a的取值范圍為(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.四棱錐P-ABCD的底面是菱形,∠BAD=60°,PA⊥底面ABCD,PA=AB=a,E為棱PC上點(diǎn).
(1)面EBD與面PAC能否始終垂直,證明你的結(jié)論;
(2)若E為PC中點(diǎn),求異面直線BE與PA所成角;
(3)當(dāng)△EBD面積最小時(shí),求E-BDC體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn,Tn,若3n•an=(2n+1)bn,則$\frac{S_9}{T_9}$=( 。
A.$\frac{19}{27}$B.$\frac{27}{19}$C.$\frac{11}{15}$D.$\frac{15}{11}$

查看答案和解析>>

同步練習(xí)冊(cè)答案