9.函數(shù)$f(x)=\frac{1}{x}ln(-{x^2}-3x+4)$的定義域是( 。
A.(-∞,-4]∪[1,+∞)B.(-4,0)∪(0,1)C.(-4,1)D.(-∞,-4)∪(1,+∞)

分析 由對數(shù)式的真數(shù)大于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{-{x}^{2}-3x+4>0}\\{x≠0}\end{array}\right.$,解得:-4<x<1且x≠0.
∴函數(shù)$f(x)=\frac{1}{x}ln(-{x^2}-3x+4)$的定義域是(-4,0)∪(0,1).
故選:B.

點評 本題考查函數(shù)的定義域及其求法,考查了一元二次不等式的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合M={-3,-2,-1,0,1,2},N={x∈R|(x-1)(x+2)>0},則M∩N=( 。
A.{-3,2}B.{-1,0,1}C.{-3,-2,-1,0,1,2}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.關于函數(shù)f(x)=sin2x-($\frac{2}{3}$)${\;}^{\sqrt{|x|}}$+$\frac{1}{2}$,有下列四個結論,其中正確結論的個數(shù)為( 。
A.f(x)是奇函數(shù)B.f(x)的最小值是$-\frac{1}{2}$
C.f(x)的最大值是$\frac{5}{6}$D.當x>2003時,$f(x)>\frac{1}{2}$恒成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)設0<x<$\frac{3}{2}$,求函數(shù)y=x(2-x)的最大值
(2)已知x>3,求y=x+$\frac{4}{x-3}$的最小值
(3)已知x>0,y>0,$\frac{x}{2}$+$\frac{y}{3}$=2,求xy的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)為二次函數(shù),f(0)=2,且滿足f(x+1)-f(x)=2x-1.
(1)求f(x)的表達式;
(2)當x∈[-2,2]時,求函數(shù)的值域;
(3)當∈[t,t+1]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖一,矩形ABCD與ADEF所在平面垂直,將三角形DEF沿FD翻折,使翻折后點E落在BC上(如圖二),設AB=1,F(xiàn)A=x,AD=y.
(Ⅰ)試求y關于x的函數(shù)解析式;

(Ⅱ)圖二中當E為BC中點時求直線AD與平面FDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.正三角形的一個頂點位于原點,另外兩個頂點在拋物線y2=x上,則它的邊長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知y=asinx+bcosx+c的圖象有一個最低點($\frac{11π}{6}$,1),如果圖象各點縱坐標不變,橫坐標縮短為原來的$\frac{3}{π}$倍,再向左平移1個單位,可得到y(tǒng)=f(x)的圖象.又直線y=3與y=f(x)每相鄰兩個交點的距離均為3.
(1)求y=f(x)的解析式;
(2)若y=f(x)在[$\frac{π}{6}$,l]上單調(diào),求l的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.sin77°cos47°-sin13°sin47°的值等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案