20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},(x≤1)}\\{lo{g}_{\frac{1}{3}}x,(x>1)}\end{array}\right.$,則函數(shù) y=f (1-x) 的大致圖象是( 。
A.B.C.D.

分析 利用所求函數(shù)圖象上的點與函數(shù)值的對應關系判斷即可.

解答 解:函數(shù) y=f (1-x) 的點為:(0,f(1)),即(0,3)在函數(shù)的圖象上,排除A,C選項;
函數(shù) y=f (1-x) 的點為:(1,f(0)),即(1,1)在函數(shù)的圖象上,
排除B,
故選:D.

點評 本題考查函數(shù)的圖象的判斷與應用,充分了解函數(shù)的解析式是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知$P:{x^2}-2x<0,Q:\frac{x+3}{x-1}≤0$,若P真Q假,則x的取值范圍是( 。
A.[1,2)B.(1,2)C.(-∞,-3)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設集合A={x|(x-1)(x-3)<0},B={y|y=2x,x∈[1,2]},則A∩B=(  )
A.B.(1,3)C.[2,3)D.(1,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.按照圖如圖所示的程序框圖執(zhí)行,若輸出結果為s=31,則M處條件是( 。
A.k<32?B.k>32?C.k<16?D.k>16?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在Rt△ABC中,∠ACB=90°,$\overrightarrow{BD}$=$\overrightarrow{DA}$,$\overrightarrow{AB}$=2$\overrightarrow{BE}$,則 $\overrightarrow{CD}•\overrightarrow{CA}+\overrightarrow{CE}•\overrightarrow{CA}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},則 A∩B=( 。
A.[1,3]B.(1,3]C.[2,3]D.(2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設數(shù)列{an}的各項都是正數(shù),且對任意n∈N*,都有an2=2Sn-an,其中Sn為數(shù)列{an}的前n項和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=2n+λ•3${\;}^{{a}_{n}}$(n∈N*),若使得對任意n∈N*,都有bn+1<bn成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在平面直角坐標系xoy中,直線l:y=2x-4,圓C的半徑為1,圓心在直線l上,若圓C上存在點M,且M在圓D:x2+(y+1)2=4上,則圓心C的橫坐標a的取值范圍是(  )
A.$[{\frac{3}{5},2}]$B.$[{0,\frac{12}{5}}]$C.$[{2-\frac{2}{5}\sqrt{5},2+\frac{2}{5}\sqrt{5}}]$D.$[{0,2-\frac{2}{5}\sqrt{5}}]∪[{2+\frac{2}{5}\sqrt{5},4}]$

查看答案和解析>>

同步練習冊答案