考點(diǎn):數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)令n=1求出首項(xiàng),然后根據(jù)4an=4Sn-4Sn-1進(jìn)行化簡得an-an-1=2,從而得到數(shù)列{an}是等差數(shù)列,直接求出通項(xiàng)公式即可;
(2)利用裂項(xiàng)法求出前n項(xiàng)和Tn,即可證明結(jié)論.
解答:
(1)解:∵4S
1=4a
1=(a
1+1)
2,
∴a
1=1.當(dāng)n≥2時(shí),4a
n=4S
n-4S
n-1=(a
n+1)
2-(a
n-1+1)
2,
∴2(a
n+a
n-1)=a
n2-a
n-12,
又{a
n}各項(xiàng)均為正數(shù),
∴a
n-a
n-1=2.
∴數(shù)列{a
n}是等差數(shù)列,
∴a
n=2n-1;
(2)證明:b
n=
=
(
-
),
∴T
n=
(1-
+
-
+…+
-
)=
(1-
)=
=
≥
.
點(diǎn)評:本題主要考查了數(shù)列的遞推關(guān)系,考查等差數(shù)列的性質(zhì)及其應(yīng)用,第二問難度有些大,利用裂項(xiàng)法進(jìn)行求和,這是數(shù)列求和常用的方法,此題是一道中檔題.