“x2-1≤0”是“x-1=0”的( )
A.充分但非必要條件
B.必要但非充分條件
C.充分且必要條件
D.既非充分也非必要條件
【答案】分析:分別討論“x2-1≤0”⇒“x-1=0”與“x-1=0”⇒“x2-1≤0”的真假,根據(jù)充要條件的定義,即可得到答案.
解答:解:當(dāng)“x2-1≤0”時,-1≤x≤1,此時“x-1=0”不一定成立;
即“x2-1≤0”⇒“x-1=0”為假命題;
當(dāng)“x-1=0”時,x=1,此時“x2-1≤0”成立;
“x-1=0”⇒“x2-1≤0”為真命題
故“x2-1≤0”是“x-1=0”的必要但非充分條件
故選B
點(diǎn)評:本題考查的知識點(diǎn)是充分條件,必要條件與充要條件的判斷,基本根據(jù)定義先判斷“x2-1≤0”⇒“x-1=0”與“x-1=0”⇒“x2-1≤0”的真假,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè)x∈R,則x2-1=0是x3-x=0的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、“x2-1≤0”是“x-1=0”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x2-1=0”是“x-1=0”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x∈R,則x2-1=0是x3-x=0的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案