已知數(shù)列{an}的前n項(xiàng)和為Sn,又a1=1,a2=2,且滿(mǎn)足Sn+1=kSn+1,
(1)求k的值及{an}的通項(xiàng)公式;(2)若,求證:.
(1),(2)見(jiàn)解析
解析試題分析:(1)對(duì)于,取,得,結(jié)合,即可求得,對(duì)于求的通項(xiàng),由及兩式相減,可得與的關(guān)系,從而可知為特殊數(shù)列,進(jìn)而求得其通項(xiàng)公式;(2)由裂成利用裂項(xiàng)相消法求得的前n項(xiàng)和,從而易得結(jié)論.
試題解析:(1)令,則,因此,所以,
從而 ①,又 ②, 由①-②得,,故, 又,所以;(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1f/a/jjdrq3.png" style="vertical-align:middle;" />,故
,得證.
考點(diǎn):與的關(guān)系:,數(shù)列求和方法:裂項(xiàng)相消法,特殊到一般的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
對(duì)正整數(shù),設(shè)曲線(xiàn)在處的切線(xiàn)與軸交點(diǎn)的縱坐標(biāo)為,則數(shù)列的前項(xiàng)和的公式是 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的各項(xiàng)均為正數(shù),是數(shù)列的前n項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項(xiàng)和滿(mǎn)足,,且
(1)求數(shù)列{}和{}的通項(xiàng)公式:
(2)設(shè)為數(shù)列{.}的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對(duì)任意,有
.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的通項(xiàng),其前n項(xiàng)和為.
(1)求;
(2)求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知連續(xù)個(gè)正整數(shù)總和為,且這些數(shù)中后個(gè)數(shù)的平方和與前個(gè)數(shù)的平方和之差為.若,則的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com