已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn)是F1,F(xiàn)2,兩個(gè)頂點(diǎn)式A1,A2,過(guò)點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段A1A2為直徑的圓內(nèi),則雙曲線離心率的取值范圍是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)斜率與平行的關(guān)系即可得出過(guò)焦點(diǎn)F2的直線,與另一條漸近線聯(lián)立即可得到交點(diǎn)M的坐標(biāo),再利用點(diǎn)M在以線段A1A2為直徑的圓內(nèi)和離心率的計(jì)算公式即可得出.
解答: 解:不妨設(shè)過(guò)點(diǎn)F2與雙曲線的一條漸過(guò)線平行的直線方程為y=
b
a
(x-c),
與y=-
b
a
x聯(lián)立,可得交點(diǎn)M(
c
2
,-
bc
2a
),
∵點(diǎn)M在以線段A1A2為直徑的圓內(nèi),
c2
4
+
b2c2
4a2
<a2,
c4
a4
<4
,
∴e4<4,
∴e<
2
,
又∵e>1,
∴雙曲線離心率的取值范圍是(1,
2
).
故答案為:(1,
2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是雙曲線的簡(jiǎn)單性質(zhì),熟練掌握雙曲線的漸近線、離心率的計(jì)算公式、點(diǎn)與圓的位置關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-11,a4+a6=-6,S5等于( 。
A、-35B、-30
C、30D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z1=1-i,z2=2+i,其中i為虛數(shù)單位,則z1•z2的虛部為(  )
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a2+b2=1,c2+d2=1,則下面的不等式中正確的是(  )
A、abcd≤
1
4
B、abcd≥
1
4
C、0≤abcd≤
1
4
D、-
1
4
≤abcd≤
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,曲線Γ由曲線C1
x2
a2
+
y2
b2
=1(a>b>0,y≤0)
和曲線C2
x2
a2
-
y2
b2
=1(y>0)
組成,其中點(diǎn)F1,F(xiàn)2為曲線C1所在圓錐曲線的焦點(diǎn),點(diǎn)F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點(diǎn),
(1)若F2(2,0),F(xiàn)3(-6,0),求曲線Γ的方程;
(2)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點(diǎn)A、B,求證:弦AB的中點(diǎn)M必在曲線C2的另一條漸近線上;
(3)對(duì)于(1)中的曲線Γ,若直線l1過(guò)點(diǎn)F4交曲線C1于點(diǎn)C、D,求△CDF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線2x-y=7與直線3x+2y-7=0的交點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年5月31日,江西宜春的高三考生柳艷兵與易征勇在客運(yùn)班車上與持刀歹徒英勇搏斗的事跡.事后不久,江西某市迅速在全市高中開(kāi)展了“向柳艷兵與易征勇同學(xué)學(xué)習(xí)”的宣傳活動(dòng),該市某高中就這一宣傳活動(dòng)在該校師生中抽取了120人進(jìn)行問(wèn)卷調(diào)查,調(diào)查結(jié)果如下:
 所持態(tài)度 很有必要 有必要 意義不大
 人數(shù)(單位:人) 60 40 20
(1)若從這120人中按照分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談,再?gòu)倪@6人中隨機(jī)抽取3人作進(jìn)一步調(diào)查,求這3人中至少有1人態(tài)度為“很有必要”的概率;
(2)現(xiàn)從(1)所抽取的6人的問(wèn)卷中每次抽取1份,且不重復(fù)抽取,直至確定出所有態(tài)度為“很有必要”的問(wèn)卷為止,記所要抽取的次數(shù)為X,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-
1
x
+alnx-1在其定義域上為增函數(shù)
(1)求a的取值范圍;
(2)當(dāng)a≥-2時(shí),試給出零點(diǎn)所在的一個(gè)閉區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=4上的任意一點(diǎn),點(diǎn)M、N依次為點(diǎn)P在x軸、y軸上的投影,若
OQ
=
3
2
OM
+
1
2
ON
,點(diǎn)Q的軌跡未曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過(guò)點(diǎn)P作都有斜率的直線l1、l2,使得l1、l2與曲線C都只有一個(gè)公共點(diǎn),試判斷l(xiāng)1、l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案