15.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布N(0,22),從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(2,4)內(nèi)的概率為( 。ㄈ綦S機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56%B.13.59%C.27.18%D.31.74%

分析 由題意P(-2<ξ<2)=0.6826,P(-4<ξ<4)=0.9544,可得P(2<ξ<4)=$\frac{1}{2}$(0.9544-0.6826),即可得出結(jié)論.

解答 解:由題意P(-2<ξ<2)=0.6826,P(-4<ξ<4)=0.9544,
所以P(2<ξ<4)=$\frac{1}{2}$(0.9544-0.6826)=0.1359.
故選:B.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查正態(tài)分布中兩個(gè)量μ和σ的應(yīng)用,考查曲線的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥1}\\{x-y≤0}\\{x+y-6≤0}\end{array}\right.$,則z=2x+y的最大值為( 。
A.9B.4C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)向量前$\overrightarrow{BA}$=(3,-2),$\overrightarrow{AC}$=(0,6),則|$\overrightarrow{BC}$|等于( 。
A.2$\sqrt{6}$B.5C.$\sqrt{26}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從焦點(diǎn)為F的拋物線y2=2px(p>0)上取一點(diǎn)A(x0,y0)(x0>$\frac{p}{2}$)作其準(zhǔn)線的垂線,垂足為B,若|AF|=4,B到直線AF的距離為$\sqrt{7}$,則此拋物線的方程為y2=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個(gè)口袋中裝有6個(gè)小球,其中紅球4個(gè),白球2個(gè),如果不放回地依次摸出2個(gè)小球,則在第一次摸出紅球的條件下,第2次摸出紅球的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=5$,則|$2\overrightarrow a-\overrightarrow b$|的值為(  )
A.21B.$\sqrt{21}$C.$\sqrt{23}$D.$\sqrt{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,則a0+a1+a2+a3+a4+a5+a6等于( 。
A.4B.-71C.64D.199

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù),0<α<π),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{6}$)=$\frac{1}{2}$.
(1)求曲線C1的極坐標(biāo)方程;
(2)若直線OP:θ=θ1(0<θ1<$\frac{π}{2}$)交曲線C1于點(diǎn)P,交曲線C2于點(diǎn)Q,求|OP|+$\frac{1}{|OQ|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=($\frac{1}{2}$)10-ax,其中a為常數(shù),且f(3)=$\frac{1}{16}$.
(1)求a的值;
(2)若f(x)≥4,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案