19.已知對任何實數(shù)x,(x+a)•(x+1)10=a1x11+a2x10+a3x9+…+a11x+2,則a=2.

分析 常數(shù)項應(yīng)該為由a和(x+1)10的常數(shù)項夠成,問題得以解決.

解答 解:由(x+a)•(x+1)10=a1x11+a2x10+a3x9+…+a11x+2,
則常數(shù)項應(yīng)該為由a和(x+1)10的常數(shù)項夠成,
因為(x+1)10的常數(shù)項為1,
所以a=2,
故答案為:2.

點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集U={x∈N*|x≤5},A={1,4},B={4,5},則∁U(A∩B)=( 。
A.{1,2,3,5}B.{1,2,4,5}C.{1,3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)2x-1=a,2y+2=b,則2x+y=$\frac{ab}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若|$\overrightarrow{AC}$|=2|$\overrightarrow{CB}$|且$\overrightarrow{AC}$=λ$\overrightarrow{CB}$,則λ=( 。
A.2B.-2C.2或-2D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知{an}是各項為正數(shù)的等比數(shù)列,若a1+a2+a3=2,a4+a5+a6=8,則其前9項的和S9的值為42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)求(x2-x+1)(1+x)8展開式中x4項的系數(shù);
(2)求(1-x)5(1-2x)6展開式中x3項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.tan78°-tan33°tan78°-tan33°等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知tanα=-3,α∈(-π,0),則$\sqrt{10}$cosα-tan2α=( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,設(shè)點A(1,0),B(0,1),C(a,b),D(c,d),若不等式$\overrightarrow{CD}$2≥(m-2)$\overrightarrow{OC}$•$\overrightarrow{OD}$+m($\overrightarrow{OC}$•$\overrightarrow{OB}$)•($\overrightarrow{OD}$•$\overrightarrow{OA}$)對任何實數(shù)a,b,c,d都成立,則實數(shù)m的最大值是$\sqrt{5}$-1.

查看答案和解析>>

同步練習(xí)冊答案