已知雙曲線的漸近線方程為y=±3x,且一個頂點(diǎn)的坐標(biāo)是(0,3),則此雙曲線的方程為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)雙曲線的漸近線方程為y=±3x,且一個頂點(diǎn)的坐標(biāo)是(0,3),可確定雙曲線的焦點(diǎn)在y軸上,從而可求雙曲線的標(biāo)準(zhǔn)方程
解答:由題意,∵雙曲線的漸近線方程為y=±3x,且一個頂點(diǎn)的坐標(biāo)是(0,3),
∴雙曲線的焦點(diǎn)在y軸上
設(shè)雙曲線的方程為:(a>0,b>0)

∴b=1
∴雙曲線的方程為:
故選B.
點(diǎn)評:本題以雙曲線的性質(zhì)為載體,考查雙曲線的標(biāo)準(zhǔn)方程,解題的關(guān)鍵是確定雙曲線的焦點(diǎn)在y軸上
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±2x,且與橢圓
x2
49
+
y2
24
=1
有相同的焦點(diǎn),則其焦點(diǎn)坐標(biāo)為
 
,雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±2x,且與
x2
49
+
y2
24
=1
有相同的焦點(diǎn),則其標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±
1
2
x
,兩頂點(diǎn)之間的距離為4,雙曲線的標(biāo)準(zhǔn)方程為
x2
4
-y2=1
y2
4
-
x2
16
=1
x2
4
-y2=1
y2
4
-
x2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±
4
3
x
,并且焦距為20,則雙曲線的標(biāo)準(zhǔn)方程為
x2
36
-
y2
64
=1,
y2
64
-
x2
36
=1
x2
36
-
y2
64
=1,
y2
64
-
x2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±
x2
,虛軸長為4,則該雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊答案