設函數(shù)(1)當時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率≤恒成立,求實數(shù)的取值范圍;(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.
(1)的極大值為,此即為最大值;(2)≥;(3).
【解析】
試題分析:(1)依題意,知的定義域為(0,+∞),當時,,
(2′)令=0, 解得.(∵)
因為當時,,此時單調遞增;當時,,此時單調遞減。所以的極大值為,此即為最大值 4分
(2),,則有≤,在上恒成立,
所以≥,(8′)當時,取得最大值,所以≥ 8分
(3)因為方程有唯一實數(shù)解,所以有唯一實數(shù)解,
設,則.令,.
因為,,所以(舍去),,
當時,,在(0,)上單調遞減,當時,,在(,+∞)單調遞增 當時,=0,取最小值 則既所以,因為,所以(*)設函數(shù),因為當時,是增函數(shù),所以至多有一解.因為,所以方程(*)的解為,即,解得. 12分
考點:導數(shù)的幾何意義,直線方程,利用導數(shù)研究函數(shù)的極值(最值),不等式恒成立問題。
點評:典型題,切線的斜率,等于在切點的導函數(shù)值。利用導數(shù)研究函數(shù)的極值,一般遵循“求導數(shù)、求駐點、研究導數(shù)的正負、確定極值”,利用“表解法”,清晰易懂。不等式恒成立問題,往往通過構造函數(shù),通過研究函數(shù)的最值確定參數(shù)的范圍。
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)設函數(shù)(1)當時,求的最大值;(2)令,(0≤3),其圖象上任意一點處切線的斜率≤恒成立,求實數(shù)的取值范圍; (3)當,,方程有唯一實數(shù)解,求正數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年四川達州普通高中高三第一次診斷檢測理科數(shù)學試卷(解析版) 題型:解答題
設函數(shù)
(1)當時,求的單調區(qū)間;
(2)若當時恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆廣東省汕頭市高二下學期期中文科數(shù)學試卷(解析版) 題型:解答題
(14分)設函數(shù)
(1)當時,求的最大值;
(2)令,以其圖象上任意一點為切點的切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當時,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年天津市高三第三次月考理科數(shù)學 題型:解答題
設函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內為增函數(shù),求實數(shù)的取值范圍;
(3)設函數(shù),若在上至少存在一點使成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年河北省高二下學期期中考試理科數(shù)學 題型:解答題
(本小題滿分12分)
設函數(shù)
(1)當時,求的最大值;
(2)令,(),其圖象上任意一點處切線的斜率≤恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com