【題目】已知長方形, , ,以的中點為原點,建立如圖所示的平面直角坐標(biāo)系.
(1)求以為焦點,且過兩點的橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設(shè),點坐標(biāo)為,若,求的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)確定的坐標(biāo),利用橢圓的定義,求出幾何量,即可求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,代入橢圓方程,利用韋達(dá)定理及向量知識,結(jié)合配方法,即可求的取值范圍.
試題解析:(1)由題意可得點的坐標(biāo)分別為, , .設(shè)橢圓的標(biāo)準(zhǔn)方程是,則,∴.∴,∴橢圓的標(biāo)準(zhǔn)方程為.
(2)由題意容易驗證直線的斜率不為0,故可設(shè)直線的方程為.代入中,得.設(shè), ,由根與系數(shù)關(guān)系,得①,②,∵,∴且,將上式①的平方除以②,得,即,所以,由 ,即.∵, , ,又, .故 .令,∵,∴, , ,∵,∴, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計表:
(1)令,利用給出的參考數(shù)據(jù)求出關(guān)于的回歸方程.(,精確到0.1)
參考數(shù)據(jù):,,
其中,
(2)對于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量不高于20微克時對人體無害,為了放心食用該蔬菜,請估計至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月16日摩拜單車進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時尚,旅順口區(qū)對市民進(jìn)行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查統(tǒng)計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經(jīng)常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.
(1)請你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:
年輕人 | 非年輕人 | 合計 | |
經(jīng)常使用單車用戶 | |||
不常使用單車用戶 | |||
合計 |
(2)請根據(jù)(1)中的列聯(lián)表,計算值并判斷能否有的把握認(rèn)為經(jīng)常使用共享單車與年齡有關(guān)?
(附:
當(dāng)時,有的把握說事件與有關(guān);當(dāng)時,有的把握說事件與有關(guān);當(dāng)時,認(rèn)為事件與是無關(guān)的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教師有相同的語文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈送給4位學(xué)生,每位學(xué)生1本,則不同的贈送方法共有( )
A. 15種 B. 20種 C. 48種 D. 60種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為,甲投籃3次均未命中的概率為,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量關(guān)于的回歸方程模型,其對應(yīng)的數(shù)值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)請用相關(guān)系數(shù)加以說明與之間存在線性相關(guān)關(guān)系(當(dāng)時,說明與之間具有線性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測當(dāng)時,對應(yīng)的值為多少(精確到).
附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,,相關(guān)系數(shù)公式為:.
參考數(shù)據(jù):
,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng),且時證明不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
(參考公式:回歸直線方程為,其中, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上恰有兩個不同的零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com