【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量關于的回歸方程模型,其對應的數(shù)值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)請用相關系數(shù)加以說明與之間存在線性相關關系(當時,說明與之間具有線性相關關系);
(2)根據(jù)(1)的判斷結果,建立關于的回歸方程并預測當時,對應的值為多少(精確到).
附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,,相關系數(shù)公式為:.
參考數(shù)據(jù):
,,,.
科目:高中數(shù)學 來源: 題型:
【題目】媒體為調(diào)查喜歡娛樂節(jié)目是否與性格外向有關,隨機抽取了400名性格外向的和400名性格內(nèi)向的居民,抽查結果用等高條形圖表示如下圖:
(1)填寫完整如下列聯(lián)表;
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.001的前提下認為喜歡娛樂節(jié)目與性格外向有關?
參考數(shù)據(jù)及公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),( ).
(Ⅰ)若有最值,求實數(shù)的取值范圍;
(Ⅱ)當時,若存在、(),使得曲線在與處的切線互相平行,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(, )展開式的前三項的二項式系數(shù)之和為16,所有項的系數(shù)之和為1.
(1)求和的值;
(2)展開式中是否存在常數(shù)項?若有,求出常數(shù)項;若沒有,請說明理由;
(3)求展開式中二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形, , ,以的中點為原點,建立如圖所示的平面直角坐標系.
(1)求以為焦點,且過兩點的橢圓的標準方程;
(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設,點坐標為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經(jīng)典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
分組 | 頻數(shù) | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計 | 100 | 1.00 |
(1)求的值及隨機抽取一考生恰為優(yōu)秀生的概率;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數(shù);
(3)在第(2)問抽取的優(yōu)秀生中指派2名學生擔任負責人,求至少一人的成績在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當時,若存在實數(shù)使得不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(θ為參數(shù)),將上的所有點的橫坐標、縱坐標分別伸長為原來的和2倍后得到曲線,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)試寫出曲線的極坐標方程與曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最小,并求此最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程.
已知曲線在直角坐標系下的參數(shù)方程為(為參數(shù)).以為極點, 軸的非負半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)直線的極坐標方程是,射線與曲線交于點,與直線交于,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com