(本小題滿分12分)
如圖,已知拋物線的焦點為.過點的直線交拋物線于,兩點,直線,分別與拋物線交于點

(Ⅰ)求的值;
(Ⅱ)記直線的斜率為,直線的斜率為.證明:為定值.

(1) (2)

解析試題分析:(Ⅰ)解:依題意,設(shè)直線的方程為.            
將其代入,消去,整理得 .       
從而.                                        
(Ⅱ)證明:設(shè),

.  
設(shè)直線的方程為,將其代入,消去,
整理得 .            
所以 .               
同理可得 .          
.                       
由(Ⅰ)得 ,為定值.  
考點:直線與拋物線的位置關(guān)系
點評:解決該試題的關(guān)鍵是利用聯(lián)立方程組,結(jié)合韋達定理,來分析得到求解。屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知中心在坐標原點,焦點在軸上的橢圓過點,且它的離心率.

(Ⅰ)求橢圓的標準方程;
(Ⅱ)與圓相切的直線交橢圓于兩點,若橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的右焦點,且,設(shè)短軸的一個端點為,原點到直線的距離為,過原點和軸不重合的直線與橢圓相交于兩點,且.
(1)求橢圓的方程;
(2)是否存在過點的直線與橢圓相交于不同的兩點,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知直線與曲線交于不同的兩點,為坐標原點.
(1)若,求證:曲線是一個圓;
(2)若,當時,求曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥軸時,求、的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)是否存在、的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的、的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)已知直線與圓的交點為A、B,
(1)求弦長AB;
(2)求過A、B兩點且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題滿分14分)
已知△的兩個頂點的坐標分別是,,且所在直線的斜率之積等于
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線兩點,設(shè)點關(guān)于軸的對稱點為(不重合).求證直線軸的交點為定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)
已知點,是拋物線上相異兩點,且滿足
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.

查看答案和解析>>

同步練習冊答案